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ABSTRACT

Directed graphs contain valuable information about the relation-
ships between entities, and whose structure can reveal a multitude
of dependencies. This makes directed graphs ideal datasets for anal-
ysis, but their exact structural topology might be sensitive and in
need of protection. Previous literature focuses on protecting the
privacy of undirected, power-law social network graphs, but given
the proliferation of data pipelines and Directed Acyclic Graphs,
we focus on directed, lineage graphs. We proposeMerge-Split, a
graph perturbation algorithm that increasingly obscures subgraph
structural identity while minimizing overall general changes in
structure. Merge-Split perturbs the graph with a sequence of ver-
tex merges and splits, whose order is determined by a potential
function that minimizes the change in a graph’s spectral decomposi-
tion. Restricted Spectral Similarity (RSS) has been used to compute
the spectral change induced from coarsening undirected graphs,
and we extend this by providing Directed-RSS, which computes the
spectral distance between a directed graph and its Merge-Split-
perturbed counterpart. In addition, the disruption and preservation
of local and global random walks, respectively, are measured by
introducing a Random Walk KL Divergence metric. Results indicate
that our potential function optimizes both across 4 test graphs.
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1 INTRODUCTION

The realization that lineage graphs, or directed acyclic graphs
(DAGs) in general, contain valuable information implies that the
valuable information needs some type of protection, especially
when they are shared or published. There are many uses of lin-
eage, including governance, dependency analysis, data discovery,
observability and orchestration. Different attributes of the graph
are relevant to each of these use cases. We proposeMerge-Split as
a way to perturb a lineage graph whose overall structure and lin-
eage are maintained while its local structure is sufficiently obscured
to protect their value. Differential privacy can be used to obscure
numeric attributes of the nodes and edges, however, deleting or
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adding nodes and edges can destroy the lineage information as well
as global structure. Rather than adding noise to the graph, Merge-
Split perturbs the graph in a way that minimizes the change in its
spectrum.

The consideration of privacy in the publication of graphs has
largely been driven by efforts to deanonymize them. Backstrom et.
al [2] describe attacks that enable the identification of𝑂 (𝑁 2) nodes
from𝑂 (𝑙𝑜𝑔𝑁 ) "Sybil node" insertions. Narayan et. al [32] extended
this work by introducing the clique-isomorphism-search attack
used to deanonymize users in social networks. Differential Privacy
(DP) [8] partially addressed these concerns by protecting individual
node/edge privacy during aggregative undirected graph queries
such as [18], subgraph count (such as the number of 𝑘-cliques)
[14, 16] and degree distribution [7, 14, 17, 18]. However, to release
the graphs themselves, researchers have worked on synthetic graph
generation [40, 47] and perturbation[12, 22].

These works focus on undirected, power-law graphs, and al-
though many studies support their ubiquity [10, 29, 36], others
challenge them [11, 21, 39]. Broido et. al [3] found that amongst a
large diversity of network datasets, strongly power-law graphs are
empirically rare, while for most networks, log-normal distributions
better fit the data.

Directed, non-power law graphs are characteristic of an increas-
ingly common set of graphs in today’s data ecosystem: DAGs and
Data Pipelines. DAGs capture acyclic, causal dependencies, and tend
to follow non-power-law distributions as there is rarely one node
that is a causal dependency for every other node in the graph [38].
DAGs are universally used in data center scheduling algorithms
[9, 24], epidemiology factor analysis [38], hierarchical knowledge
graphs [5, 26], or in the computation execution of neural networks
[37, 45]. The machine learning community can benefit from the
publication of productive DAGs but without revealing their "secret
sauce." In general directed, lineage-like graphs can be used to create
better schedulers [1, 19] or to model complex causal relationships
[6, 34]. Additionally, almost all modern-day companies rely upon
data pipelines to ingest and process data at scale [27, 46], and inter-
nally, companies can benefit from the dispersion of these pipelines
to allow engineers to diagnose failure modes or inefficiencies better
[24]. Since the key aspect of these graphs is their structural orga-
nization, or the ancestral lineage of each node, we refer to these
graphs as lineage graphs. There is tremendous utility in releasing
lineage graphs to the Machine Learning community and within
corporations, although privacy leakage remains a central concern.

We proposeMerge-Split, a DAG perturbation algorithm that
generates publishable lineage graphs by selectively merging and
splitting nodes (and their corresponding edge sets). We show that
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iterative applications of Merge-Split increasingly disturb the type-
/frequency of local subgraphs, making it difficult to identify a
graph’s real/obfuscated components. Besides directedness, Merge-
Split differs from previous works because it maintains overall
structure in the context of directed random walks by minimizing
the change in the graph’s spectrum. Our contributions are:

(1) Merge-Split: a directed graph perturbation algorithm, that
has the ability to obfuscate nodes/edges of the graph while
maintaining overall structural properties in the context of
lineage (i.e. directed random walks).

(2) Efficient and exact calculation of Merge-Split’s induce
spectral change, which we term: Directed Restricted Spectral
Similarity. We show that this property upper-bounds the
change in a graph’s steady state distribution.

(3) Random-Walk KL Divergence is used to measure local/global
structural differences. This metric could be a direct opti-
mization objective of learning-based perturbation methods.

(4) A potential function that samples operations that empiri-
cally minimize the Aggregate Directed Restricted Spectral
Similarity on four directed graphs while perturbing local
substructures as captured by Random-Walk KL Divergence.

(5) Empirical results that show that iterative applications of
Merge-Split increasingly disturb the frequency and type
of subgraphs present between the original and perturbed
graphs which justify our conjecture thatMerge-Split in-
creases the difficulty of locating subgraphs.

The rest of the paper is organized as follows. Section 2 provides
the foundations and basic definitions, including what is meant
by lineage preservation and the basic merge and split operations.
Section 3 introduces our spectral similarity metric for directed
graphs that is used to control which operations are performed with
which nodes. Empirical verification of this metric is presented in
Section 4. The heart of the algorithm is in Section 5, while Sections
6 and 7 show that the properties are preserved. Finally, we show
the similarities and differences between our work and published
results and conclude with a visual representation of the effects of
various perturbation choices.

2 FOUNDATIONS

We seek to publish lineage graphs (i.e. directed, non-power law)
with the lineage information and global structure preserved while
local structure is obscured. Lineage graphs generally capture com-
plex dependencies (e.g. edges) on raw input objects (e.g. source
nodes), a series of transformation hierarchy (e.g. internal nodes)
and a set of output (e.g. sink nodes).

Local structure is obscured by perturbing the original graph.
Perturbation is the process by which the nodes/edges of a graph are
"perturbed" with randomized creation/deletion, allowing unaffected
nodes/edges to retain their identity. It should come as no surprise
that we do this by a sequence of merge and splits.

2.1 Lineage Preservation

Definition 1. Lineage Preservation: LetD be the set of vertices

that are part of the process of perturbing graph𝐺 into graph𝐺 ′
and

for all vertices 𝑢 not in D, there is a 1-1 correspondence with nodes in

𝐺 ′
.Lineage is preserved when if there is a path in 𝐺 from 𝑢 to 𝑣 , then

there is a path in 𝐺 ′
from 𝑢′ to 𝑣 ′, where 𝑢′, 𝑣 ′ correspond to 𝑢, 𝑣 .

∀(𝑢,𝑣)∉D 𝑢 → . . . → 𝑣 =⇒ 𝑢′ → . . . → 𝑣 ′ (1)

2.2 Merge and Splits on Graphs

The goal of Merge-Split is to perturb a directed graph𝐺 = (V,E),
with vertex set V and edge set E where 𝑒 (𝑢, 𝑣) ∈ E and 𝑢 is source
and 𝑣 is destination. 𝐺 can be represented by adjacency matrix
(𝐴),with each edge’s initial value is 1. The value at any index (𝑢, 𝑣)
is the edge’s weight 𝑤𝑢,𝑣 . Let 𝑣 ’s predecessor set (𝑒𝑖𝑛𝑣 ), successor
(𝑒𝑜𝑢𝑡𝑣 ) set, and degree of a vertex 𝑑𝑣 be defined as:

𝑒𝑖𝑛𝑣 = {(𝑢, 𝑣) ∈ E} 𝑒𝑜𝑢𝑡𝑣 = {(𝑣,𝑢) ∈ E} 𝑑𝑣 =
∑︁

(𝑣,𝑢 ) ∈𝑒𝑜𝑢𝑡𝑣

𝑤𝑣,𝑢

Our operations for perturbation: Merge and Split are as follows:

Figure 1: Merge Operation:M𝑖, 𝑗 )𝑘 (𝐺) = 𝐺 ′
. Darkened arrows

indicate the combination of unit edge weights.

Merge Operation: A merge, M𝑖, 𝑗 )𝑘 (𝐺) = 𝐺 ′, is an atomic oper-
ation that combines any two directly connected nodes 𝑖, 𝑗 into a
composite node 𝑘 , where 𝑒𝑖𝑛

𝑘
is the union of the predecessors of

𝑖, 𝑗 connected to 𝑘 and 𝑒𝑜𝑢𝑡
𝑘

is the union of the successors of 𝑖, 𝑗
originating from 𝑘 (see Figure 1). The weights of the original edges
are copied (or summed for duplicate predecessors or successors of
𝑖 and 𝑗 ) to retain the degree of the nodes in the graph, so the total
change in weight after a merge is the loss of one edge, −𝑤𝑖, 𝑗 . This
operation creates a new graph 𝐺 ′ = (V′,E′):

V′ = V−{𝑖, 𝑗}+{𝑘} E′ = E−{∀𝑣∈{𝑖, 𝑗 }𝑒𝑖𝑛𝑣 ∪𝑒𝑜𝑢𝑡𝑣 }+{𝑒𝑖𝑛
𝑘
∪𝑒𝑜𝑢𝑡
𝑘

} (2)

Formally, a merge is a surjective mapping between V→ V′, and
if |V| = 𝑁 , then |V|′ = 𝑁 − 1. A dimension-reducing matrix 𝐶M ∈
𝑅𝑁−1×𝑁 describes how 𝑣 ∈ V is mapped onto the V′. Thus if there
exists a vector 𝑥 ∈ 𝑅𝑁 , its merged equivalent is𝐶M𝑥 , whose matrix
is defined as:

𝐶M (𝑥,𝑦) =


1/
√
2 if 𝑥 = 𝑘 & (𝑦 = 𝑖 ∨ 𝑦 = 𝑗)

1 if 𝑥 = 𝑦 & (𝑥 ≠ 𝑖 & 𝑦 ≠ 𝑗)
0 otherwise.

(3)

It’s important to note that 𝐶M is an orthonormal matrix, and thus
𝐶M𝐶

𝑇
M

= 𝐼 , which is a useful property in the definition of spectral
similarity. Additionally, merges are always lineage-preserving be-
cause, in 𝐺 ′, there are always paths from the predecessors of 𝑖, 𝑗 to
their successors.
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Figure 2: Split Operation: S𝑘 )𝑖, 𝑗 (𝐺) = 𝐺 ′
or 𝑠𝑝𝑙𝑖𝑡 𝑓 𝑢𝑛𝑐𝐺 = 𝐺 ′′

.

Lightened arrows indicate the splitting of unit edge weights.

Split Operation: A split, S𝑘 )𝑖, 𝑗 (𝐺), is an atomic operation that
splits a node 𝑘 into two nodes 𝑖, 𝑗 that are conjoined by an edge
(𝑖, 𝑗), with𝑤𝑖, 𝑗 = 1, and allocates the predecessor/successor sets of
𝑘 across 𝑖, 𝑗 . This allocation is key for preserving lineage. Therefore,
we utilize two non-negative functions 𝜓 𝑖𝑛 (),𝜓𝑜𝑢𝑡 () ≥ 0, where
𝜓 𝑖𝑛𝑣 (𝑤𝑢,𝑘 ) = 𝑤𝑢,𝑣 allocates some amount of 𝑤𝑢,𝑘 to the newly
created edge (𝑢, 𝑣) and𝜓𝑜𝑢𝑡𝑣 (𝑤𝑘,𝑢 ) = 𝑤𝑣,𝑢 allocates some amount
of𝑤𝑘,𝑢 to the newly created edges (𝑣,𝑢). For the vertices, 𝑖 and 𝑗 ,
the edge partition functions are constrained such that:

∀(𝑢,𝑘 ) ∈𝑒𝑖𝑛
𝑘

(𝜓 𝑖𝑛𝑖 (𝑤𝑢,𝑘 ) +𝜓 𝑖𝑛𝑗 (𝑤𝑢,𝑘 ) = 𝑤𝑢,𝑘 )

∀(𝑘,𝑢 ) ∈𝑒𝑜𝑢𝑡
𝑘

(𝜓𝑜𝑢𝑡𝑖 (𝑤𝑘,𝑢 ) +𝜓𝑜𝑢𝑡𝑗 (𝑤𝑘,𝑢 ) = 𝑤𝑘,𝑢 )

Under this condition, the weight of the graph increases by𝑤𝑖, 𝑗 = 1.
The edges in the input/output edge sets of 𝑖, 𝑗 are defined whenever
𝜓 () returns a positive weight, so the vertex and edge sets of 𝐺 ′:

V′ = V+{𝑖, 𝑗}−{𝑘} E′ = E+{∀𝑣∈{𝑖, 𝑗 }𝑒𝑖𝑛𝑣 ∪𝑒𝑜𝑢𝑡𝑣 }−{𝑒𝑖𝑛
𝑘
∪𝑒𝑜𝑢𝑡
𝑘

} (4)

A split can be thought of as an injective mapping between V→
V′ where |V|′ = 𝑁 + 1. We define a dimension-increasing split
matrix 𝐶S ∈ 𝑅𝑁+1×𝑁 that describes how each 𝑣 ∈ V is mapped
onto V′. This matrix is exactly the transpose of 𝐶M, and thus it
follows its orthonormal properties.

For lineage, it is necessary that predecessors of 𝑘 have a path to
successors of𝑘 . There is a large domain of𝜓 𝑖𝑛 (),𝜓𝑜𝑢𝑡 () that fits this
criterion, so to reduce a split’s complexity, we define two specific in-
stances of lineage-maintaining splits: S𝑖𝑛

𝑘 )𝑖, 𝑗 (𝑘), S
𝑜𝑢𝑡
𝑘 )𝑖, 𝑗 (𝑘). S

𝑖𝑛
𝑘 )𝑖, 𝑗 (𝑘)

creates 𝐺 ′ as seen in Fig. 2, where𝜓 𝑖𝑛
𝑖
(),𝜓 𝑖𝑛

𝑗
() randomly allocate

𝑘’s predecessor weights amongst 𝑖, 𝑗 , while𝜓𝑜𝑢𝑡
𝑗

() allocates all of
𝑘’s successor weights to 𝑗 . S𝑜𝑢𝑡

𝑘 )𝑖, 𝑗 (𝑘) creates 𝐺
′′ as seen in Fig. 2,

where 𝜓𝑜𝑢𝑡
𝑖

(),𝜓𝑜𝑢𝑡
𝑗

() randomly allocate the successor weights of
𝑘 amongst 𝑖, 𝑗 such that 𝑑𝑖 = 𝑑 𝑗 = 𝑑𝑘/2, while 𝜓 𝑖𝑛𝑖 () allocates all
predecessors of 𝑘 to 𝑖 . Therefore, S𝑖𝑛

𝑘 )𝑖, 𝑗 (𝑘), S
𝑜𝑢𝑡
𝑘 )𝑖, 𝑗 (𝑘) are always

lineage-preserving.

3 SPECTRAL SIMILARITY FOR DIRECTED

GRAPHS

Merge-Split obfuscates𝐺 ’s structure, but by howmuch? Loukas et.
al [23] (extending Spielman et. al [43, 44]) define Restricted Spectral
Similarity (RSS) which is the change in the quadratic form of a

graph’s Laplacian (𝐿) with respect to its coarsened-counterpart,
over the eigenspace of 𝐿’s first 𝐾 eigenvectors. They show that
minimizing RSS leads to the maintenance of the graph’s clustering
properties and spectrum, which previous literature connected to
holistic measures of graph structure, e.g. diameter or conductance
[28]. Since minimizing RSS is tied to the preservation of overall
structural properties, Merge-Split minimizes RSS to minimize the
structural difference between 𝐺 and 𝐺 ′. For directed graphs:

Definition 2. Random Walk Normalized Laplacian: 𝐿𝑅𝑊 =

𝐼−𝐷−1𝐴, where𝐷 is the diagonal matrix, such that𝐷 [𝑖, 𝑖] = 𝑑𝑖 and𝐴
is the adjacencymatrix (defined in Sec.2.2). The eigenvalue/eigenvector

pairs of 𝐿𝑅𝑊 are represented as (𝜆𝑖 , 𝑥𝑖 ), where 𝑥𝑖 is the eigenvector
corresponding to the 𝑖-th eigenvalue; however, unlike the undirected

Laplacian, these pairs may be complex.

𝐿𝑅𝑊 cannot be substituted into the definition of RSS, because
Loukas et. al[23] not only assumes that the graphs are undirected,
but also that there exists a linear transformation that can trans-
form 𝐿 into its coarsened counterpart. In our case, there doesn’t
exist a linear transformation that can convert 𝐿𝑅𝑊 into its Merge-
Split-perturbed counterpart, because S𝑘 )𝑖, 𝑗 is non-deterministic.
Therefore, we define a notion of RSS for Directed Graphs that are
perturbed withMerge-Split in Eq. 5.

Definition 3. Directed-RSS: ®𝛿 ∈ C𝐾 is a measure of how simi-

lar two graphs are with respect to random walks. After performing

a merge or split,
®𝛿 captures the change in the quadratic form of

𝐺 ’s Random-Walk Laplacian (𝐿𝑅𝑊 ) to that of 𝐺 ′
(𝐿′
𝑅𝑊

). Let C ∈
{𝐶M,𝐶S} be the dimension-shifting matrix to adjust the dimension

of the 𝑛-th eigenvector ( ®𝑥𝑛) of 𝐿𝑅𝑊 to the dimension of 𝐿′
𝑅𝑊

. Let

Directed-RSS be defined as follows, where we use bracket notation to

refer to a particular index of a vector and 𝑥 ′𝑛 = C𝑥𝑛 :

∀1≤𝑛≤𝐾 ®𝛿 [𝑛] = (𝐶𝑥𝑛)𝑇 𝐿′𝑅𝑊 (𝐶𝑥𝑛) − 𝑥𝑇𝑛 𝐿𝑅𝑊 𝑥𝑛 (5)

=
∑︁

(𝑢,𝑣) ∈E′
(1/𝑑𝑢 )𝑤𝑢,𝑣𝑥 ′𝑛 [𝑢] (𝑥 ′𝑛 [𝑢] − 𝑥 ′𝑛 [𝑣])

−
∑︁

(𝑢,𝑣) ∈E
(1/𝑑𝑢 )𝑤𝑢,𝑣𝑥𝑛 [𝑢] (𝑥𝑛 [𝑢] − 𝑥𝑛 [𝑣]) (6)

®𝛿O is the similarity measure between the graphs where one general

operation O is performed, where O ∈ {M𝑖, 𝑗 )𝑘 , S𝑘 )𝑖, 𝑗 }.

As seen in Eq. 6, each calculation of ®𝛿 requires 𝑂 ( |E|), which
is expensive for the entire domain of merges and splits. However,
since Merge-Split only affects a local neighborhood of vertices
per iteration, the Directed-RSS is efficiently computed from just
those vertices incident to operation. For the Directed-RSS Eq. 7 is
the simplified version for merge and Eq. 8 is the expected value for a
split (based on a random choice of S𝑖𝑛

𝑘 )𝑖, 𝑗 (𝑘), S
𝑜𝑢𝑡
𝑘 )𝑖, 𝑗 (𝑘)). For brevity,

we useM𝑖, 𝑗 , S𝑘 forM𝑖, 𝑗 )𝑘 , S𝑘 )𝑖, 𝑗 . It takes𝑂 (𝑑max) to compute ®𝛿M𝑖,𝑗

and ®𝛿S𝑘 . Therefore, the calculation across all merge and splits, and
the first 𝐾 eigenvectors, is 𝑂 (𝐾 ( |V| + |E|)𝑑max), which need only

3



Figure 3: Instantaneous Total Variation Distance (Δ𝑦𝑚𝑎𝑥 ) of 𝑥𝑠 on RT, EDP, and BIDAF.

be calculated once ( Sec. 5). Here 𝑑max = maximum degree.

®𝛿M𝑖,𝑗
[𝑛] =

3𝑤𝑖, 𝑗𝑥𝑛 [𝑖] (𝑥𝑛 [ 𝑗] − 𝑥𝑛 [𝑖])
𝑑𝑖

+∑︁
𝑡 ∈{𝑖, 𝑗 }

[ ∑︁
(𝑢,𝑡 ) ∈𝑒𝑖𝑛𝑡

𝑤𝑢,𝑡𝑥𝑛 [𝑢]
𝑑𝑢

(𝑥𝑛 [𝑡] − 𝑥 ′𝑛 [𝑘])

+
∑︁

(𝑡,𝑢 ) ∈𝑒𝑜𝑢𝑡𝑡

𝑤𝑡,𝑢 (
𝑥 ′𝑛 [𝑘] (𝑥 ′𝑛 [𝑘] − 𝑥𝑛 [𝑢])

𝑑𝑘
− 𝑥𝑛 [𝑡] (𝑥𝑛 [𝑡] − 𝑥𝑛 [𝑢])

𝑑𝑡
)
]

(7)

E[ ®𝛿S𝑘 [𝑛]] =
∑︁

(𝑢,𝑘 ) ∈𝑒𝑖𝑛
𝑘

𝑤𝑢,𝑘𝑥𝑛 [𝑢]𝑥𝑛 [𝑘]
𝑑𝑢

(1 − 1
√
2
)+

∑︁
(𝑘,𝑢 ) ∈𝑒𝑜𝑢𝑡

𝑘

𝑤𝑢,𝑘𝑥𝑛 [𝑘]
𝑑𝑢

( 2
√
2 − 3
2
√
2

𝑥𝑛 [𝑢] −
𝑥𝑛 [𝑘]
4

) (8)

DRSS and Steady State: 𝐿𝑅𝑊 is related to the transition probability
matrix (𝑃 ) of 𝐺 , since 𝐿𝑅𝑊 = 𝐼 − 𝑃 . It shares the eigenspace of 𝑃 ,
(i.e. if 𝜆𝑖 is an eigenvalue of 𝑃 , then 1 − 𝜆𝑖 is an eigenvalue of
𝐿𝑅𝑊 ). For graphs with absorbing states, (i.e. DAGs, pipelines, and
trees), there exists at least one stationary distribution, 𝑥𝑠 ∈ 𝑅 |V | ,
such that 𝑥𝑇𝑠 = 𝑥𝑇𝑠 𝑃 = 𝑥𝑇𝑠 (𝐼 − 𝐿𝑅𝑊 ). If there exists an 𝑥𝑠 , then
𝜆𝑠 = 1 is an eigenvalue of 𝑃 and 𝜆𝑠 = 0 must be an eigenvalue
of 𝐿𝑅𝑊 with eigenvector 𝑥𝑠 . A graph’s stationary distribution is
the distribution across vertices for an infinite-length random walk,
and the differences in a graph’s structure can be conveyed through
changes in its stationary distribution [30]. Thus, the relationship
between Directed-RSS and 𝑥𝑠 is used to establish a connection
between Directed-RSS’s ability to measure the structural change in
the context of random walks.

Consider a merge or split operation applied on𝐺 . To compute
the one-step random walk, on 𝐿′

𝑅𝑊
using 𝑥𝑠 , 𝑥𝑠 must be trans-

formed to the same dimension of 𝐿′
𝑅𝑊

which can be done using
𝐶 ∈ {𝐶M,𝐶S}. However, 𝐶 is an orthonormal matrix that doesn’t
preserve stochasticity, so it is necessary to introduce new vari-
ables 𝜉1, 𝜉2 ∈ 𝑑𝑖𝑚(𝐶𝑥𝑠 ), such that 𝐶𝑥𝑠 + 𝜉2 is stochastic (Details
of which can be found in the Appendix). We compare the one-
step random walk of the initial distribution 𝑥𝑠 on 𝐿′𝑅𝑊 , call this

𝑦𝑇2 = (𝐶𝑥𝑠 + 𝜉2)𝑇 (𝐼 − 𝐿′), to the transformed, stochastic version
of the steady-state 𝑦𝑇1 = (𝐶𝑥𝑠 + 𝜉1)𝑇 , with Δ𝑇𝑦 = 𝑦𝑇2 − 𝑦𝑇1 . Δ𝑦𝑚𝑎𝑥
measures the total variation distance between 𝑦𝑇2 , 𝑦

𝑇
1 , which we

bound for merges and splits in Eq. 9 and Eq. 10, respectively.

M𝑖, 𝑗 : Δ𝑦𝑚𝑎𝑥 ≤
®𝛿M𝑖,𝑗

[𝑠] − 𝜉𝑇𝑥𝐶M𝑥𝑠

1 − (
√
2−1) (𝑥𝑠 [𝑖 ]+𝑥𝑠 [ 𝑗 ] )√

2

(9)

S𝑘 : Δ𝑦𝑚𝑎𝑥 ≤
®𝛿S𝑘 [𝑠] − 𝜉𝑇𝑠 𝐶S𝑥𝑠

1 −
√
2−2√
2
𝑥 [𝑘]

(10)

These bounds imply thatminimizing ®𝛿M𝑖,𝑗
[𝑠] and ®𝛿S𝑘 [𝑠] (theDirected-

RSS on 𝑥𝑠 ) also minimize Δ𝑦𝑚𝑎𝑥 .

4 EMPIRICAL VERIFICATION

Throughout this paper, we present empirical results to both verify
the bounds as well visually represent ourMerge-Splitworks. Here
we define four lineage graphs:

(1) Random Tree (RT) (|V| = 2000) - Tree generated with
random branching factor from [𝑑min, 𝑑max], where𝑑min and
𝑑max are the minimum and maximum degrees, respectively.

(2) Enterprise Data Pipeline (EDP) (|V| = 2000) - Directed
Graph (with some cycles) where edges represent read-write
dependencies between compute nodes in a data processing
pipeline. There exist cyclic dependencies of length ≤ 2.

(3) Bidirectional Attention Flow (BIDAF) (|V| = 500) [42] -
The compute execution DAG of BIDAF, which is different
from RT or EDP due to the presence of many branching
components and single-linked lists.

(4) Residual Network for Image Recognition (ResNet)

(|V| = 2000) [13] - The compute execution DAG of a ran-
dom subgraph of ResNet. ResNet is interesting because
it contains many short residual connections, which is a
feature that isn’t present in the other graphs.

For example, for EDP, its outputs represent transformed/cleaned
datasets, while the outputs of BIDAF/ResNet are classification ten-
sors. Therefore, during perturbation, maintaining the existence of

random walks between the graphs’ inputs and outputs is critical to

retaining the semantics of the causal processes they encapsulate. We
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call the set of random walks between arbitrary nodes as the graph’s
lineage, and the foremost facet of Merge-Split is to preserve lin-
eage as defined in Eq. 1. We empirically verify the bounds in 3 by
performing alternating random merges and splits on |𝑉 | = 50 sub-
graphs of RT, EDP, and BIDAF. The maximum predicted upper
bound per operation as well as the actual Δ𝑦𝑚𝑎𝑥 is shown in Fig. 3.
In each, there exist multiple 𝑥𝑠 due to the multiplicity of the 𝜆𝑖 = 0.
Note that red-× represents the total variation distance induced for a
particular 𝑥𝑠 in the eigenspace of all stationary distributions, while
a blue-× represents the same for a split. The black line is the maxi-
mum upper bound predicted across all 𝑥𝑠 at a particular iteration.
In all graphs, this indeed upper bounds the total variation distance
in the steady-state distribution, thus minimizing ®𝛿𝑠 minimizes the
change in 𝑥𝑠 between𝐺 and𝐺 ′. We conjecture that maintaining 𝑥𝑠
also maintains the graph’s overall structure with respect to random
walks, (see Sec. 5 and Sec. 7).

5 ITERATIVE MERGE-SPLIT

Algorithm 1 Computing Directed RSS and the Potential Function

1: function 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑_𝑟𝑠𝑠(𝐺 : graph)
2: directed_rss = [· · · ] HashTable: O→ ®𝛿
3: forM𝑖, 𝑗 ∈ 𝑆M𝜏 do

4: directed_rss[M𝑖, 𝑗 ] = · · · 𝐾𝑥1 from Eq. 7
5: end for

6: for S𝑘 ∈ 𝑆S𝜏 do

7: directed_rss[S𝑘 ] = · · · 𝐾𝑥1 from Eq. 8
8: end for

9: return directed_rss
10: end function

11: function 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙_𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛(directed_rss, ®𝛿 (𝜏))
12: 𝜙𝜏 = · · · potential function
13: for O ∈ directed_rss do
14: ®𝛿O = directed_rss[O]
15: 𝜙𝜏 (O) = · · · probability from Eq. 11 using (O, ®𝛿O, ®𝛿 (𝜏))
16: end for

17: return 𝜙𝜏
18: end function

The previous sections connect the atomic merge and split opera-
tions to lineage and measure how each usage affects Directed-RSS.
This section considers how to iteratively apply each operation to
attain a sufficiently perturbed graph without destruction to its over-
all structure. Rather than choose the operation that has minimal
change, apply it and then iterate, We define a potential function

to select when and where to applyMerge-Split in order to mini-
mize the Aggregate Directed-RSS and verify its performance on our
graphs by comparing it to baselines.

Since each operation compounds the aggregate difference in
structure and can greatly affect the accumulated spectral similarity,
we use a potential function tominimize the Aggregate Directed-
RSS. After 𝜏 operations, let ®𝛿 (𝜏) ∈ C𝐾 be the Aggregate Directed-
RSS. Let 𝑆M𝜏 = {M𝑖, 𝑗 · · · } and 𝑆S𝜏 ∈ {S𝑘 · · · } be the remaining
merge and split operations respectively. The probability of selecting

Algorithm 2 Merge Split

1: function𝑚𝑒𝑟𝑔𝑒_𝑠𝑝𝑙𝑖𝑡 (𝐺 : graph)
2: directed_rss = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑_𝑟𝑠𝑠 (𝐺)
3: ®𝛿 (𝜏) = [· · · ] 𝐾𝑥1 zero vector
4: 𝜏 = 0
5: while length(directed_rss) > 0 do
6: 𝜙𝜏 = compute_potential_function(· · · )
7: O ∼ potential_function
8: if O = M𝑖, 𝑗 then
9: 𝐺 = 𝑒𝑥𝑒𝑐𝑢𝑡𝑒_𝑚𝑒𝑟𝑔𝑒 (𝐺,O)
10: else

11: 𝐺 = 𝑒𝑥𝑒𝑐𝑢𝑡𝑒_𝑠𝑝𝑙𝑖𝑡 (𝐺,O)
12: end if

13: ®𝛿 (𝜏 + 1) = ®𝛿 (𝜏) + 𝜙𝜏 (O)
14: for 𝑒𝑑𝑔𝑒 in 𝑒𝑑𝑔𝑒𝑠_𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝐺,O) do
15: directed_rss.pop(𝑒𝑑𝑔𝑒) pop edges incident to 𝑂
16: end for

17: for 𝑛𝑜𝑑𝑒 in 𝑛𝑜𝑑𝑒𝑠_𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 (𝐺,O) do
18: directed_rss.pop(𝑛𝑜𝑑𝑒) pop nodes incident to 𝑂
19: end for

20: directed_rss.pop(O)
21: 𝜏 += 1
22: end while

23: return 𝐺

24: end function

an operation O ∈ 𝑆M𝜏 ∪ 𝑆S𝜏 in terms of the potential function 𝜙𝜏 ():

𝜅 (O) = 1

∥ ®𝛿 (𝜏) + ®𝛿O∥

𝜙𝜏 (O) =
𝜅 (O)∑

M𝑢,𝑣 ∈𝑆M𝜏 𝜅 (M𝑢,𝑣) +
∑
S𝑢 ∈𝑆S𝜏 𝜅 (S𝑢 )

(11)

The update for ®𝛿 after this operation: ®𝛿 (𝜏 + 1) = ®𝛿 (𝜏) + ®𝛿𝑂 . These
steps are reflected in Algo. 1 and Algo. 2.
Semantics of Procedure and Runtime: The calculation of Eq. 6
is dependent on each vertex and its immediate neighborhood, so
an operation of one vertex, sets a downstream chain reaction of
necessary recalculations of ®𝛿O, which is computationally expensive.
However, by masking the community of nodes with edges directly
incident to the vertices in the operation, ®𝛿O becomes stationary.
Thus, 𝑥𝑛 will only be transformed at mutually exclusive indices (or
vertices) during subsequent operations avoiding the need to recal-
culate the Directed-RSS. The calculation of 𝜙𝜏 is dependent on the
size of 𝑆M𝜏 and 𝑆S𝜏 . As each set decreases in size by O(𝑑min) each 𝜏 ,
the stopping criterion is when |𝑆M𝜏 | = |𝑆S𝜏 | = 0, which takes approx-
imately O(𝐾 |V|2/𝑑min) (see supplemental). The overall run-time
of Iterative Merge-Split, where 𝛽 is a hyper-parameter indicating
the number of times Directed-RSS is recalculated and 𝑆S and 𝑆M
are repopulated, is:

O(𝛽𝐾 (( |𝑉 | + |𝐸 |)𝑑max + |𝑉 |2/𝑑min)) (12)

Measuring the Aggregate Directed-RSS: The ability of our po-
tential function to minimize the Aggregate Directed-RSS is exper-
imentally demonstrated on each of the four sample graphs. Two
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Figure 4: Aggregate Directed-RSS Norm ( | | ®𝛿 (𝜏) | |) per the random, greedy, and potential heuristics, for RT, EDP, BIDAF, and
ResNet. The results indicate that random and greedy minimizes

®𝛿 (𝜏) relative to random. Shaded regions show per-heuristic

variance over 100 trials.

heuristics, in addition to the potential function, are used for com-
parisons:

(1) random - Randomly sample O𝜏 ∈ 𝑆M ∪ 𝑆M.
(2) greedy - Pick O𝜏 ∈ 𝑆M ∪ 𝑆M such that 𝜅𝜏 (O) is minimal.
(3) potential - Sample O𝜏 from 𝑆M ∪ 𝑆M using 𝜙𝜏 (O)

The effect of using each heuristic on RT, EDP, BIDAF, and ResNet
is measured by Aggregate Directed-RSS Norm ( | | ®𝛿 (𝜏) | |) after each
application of Merge-Split, averaged over 100 trials (Fig. 4). We
use 𝛽 = 5 passes for RT, EDP, and BIDAF, and 𝛽 = 3 passes for
ResNet since the graph sizes are different. For all graphs, we used
𝐾 = 200 eigenvectors to calculate ®𝛿 . The potential appears to have
sigmoidal growth of | | ®𝛿 (𝜏) | | for RT, EDP, and ResNet, as evidenced
by its exponential growth and decay; however, for BIDAF, this is
only a portion of the sigmoid leading up to its inflection (exponen-
tial). In general, the | | ®𝛿 (𝜏) | | of the heuristics is: random > potential >
greedy. The leveling-off behavior of random and potential indicates
the distribution of ®𝛿S𝑘 and ®𝛿M𝑖,𝑗

is right-skewed. So greedy will pick
merges and splits that are on the tail-end of this distribution, caus-
ing the | | ®𝛿 (𝜏) | | to grow minimally. Note greedy sometimes leads to
degenerate cases (Fig. 8) where it strictly increases the |V| tending
to lengthen the roots and leaves (RT/EDP) and the single-linked list
(BIDAF/ResNet). potential and random avoid this issue, although
potential seems to maintain overall structure while obscuring lo-
cal subgraphs more effectively. The graphs perturbed by potential

more closely resemble the overall structure of the original and the
subgraphs surrounding the red points are more visually distinct
than those of random. To better assess the visual differences, we
sought additional ablations that quantitatively capture the local
and global structural changes according to random walks.

6 LOCAL STRUCTURE OBFUSCATION

The preceding sections demonstrate that using potential and greedy
will minimize the Aggregate Directed RSS, which is our proxy for
the change in the graph’s overall structure; however, a central goal
in the publication of lineage graphs is obscuring local structure
to ensure the privacy of subgraphs. There exist three major types
of threat models that are addressed in previous literature: node,
edge, and subgraph deanonymization. Subgraph Deanonymization

is a particularly relevant threat model [4] since it is a super-set of
node/edge deanonymization. One such example is the Sybil Sub-
graph attack, whereby a central curator collects edge information
from a set of sources and an attacker gives the curator a recogniz-
able subgraph. The curator might anonymize the nodes/edges, but
upon its release, the attacker can perform a subgraph isomorphism
to identify a known, recognizable subgraph. Once this happens,
the attacker can use additional information to deanonymize sur-
rounding regions of their subgraph and potentially the graph as a
whole [12, 31, 33]. Iterative applications of Merge-Split increas-
ingly obscure the structure of local subgraphs, and as argued by the
following text, improve the difficulty, or even make it impossible,
for an attacker to perform a subgraph isomorphism.
Subgraph Identification - Assume there exists a single instance
of a 𝑁 -sized subgraph, 𝐻𝑁 , in 𝐺 . An attacker must search for a 𝑁 -
sized orbit around each node and some subset of the orbit’s edges
to verify an isomorphism to 𝐻𝑁 , thus taking O(|V| (𝑑max)𝑁−1)
[31, 41]. However, how does that complexity change, with a singular
application of Merge-Split? Assuming that the attacker knows
thatMerge-Split was applied once, then 𝐻𝑁 will be isomorphic to
some subset of valid𝐻𝑁−1 or𝐻𝑁+1 subgraphs in𝐺 ′. The number of
splits is bound by 𝑉 (𝐻𝑁 ) = 𝑁 and the number of merges is bound
by 𝐸 (𝐻𝑁 ) = 𝑀 . In practice, some merges and splits may create an
automorphic set of 𝑁 − 1 or 𝑁 + 1 subgraphs, so the worst-case
complexity is that of searching for 𝑁 , 𝑁 + 1 subgraphs or𝑀 , 𝑁 − 1
subgraphs: O(𝑁 |V + 1| (𝑑max)𝑁 +𝑀 |V − 1| (𝑑max)𝑁−2).

Extremal analysis of search complexity doesn’t directly imply
that searching for 𝐻𝑁 will be exponential because while the sub-
graph isomorphism is NP-Complete, there exist fast solvers [35]
and techniques to improve search (i.e. searching for multiple sub-
graphs that have some relation to one another) [20]. However, we
conjecture that 𝜏 applications of Merge-Split should generate a
combinatorially large set of potential subgraphs that could cor-
respond to 𝐻𝑁 , so even with a fast solver, the search problem is
combinatorially large. Also, while we assume in our analysis that
the attacker knows 𝜏 a-priori, in practice the graph publisher won’t
release that information so the domain of subgraphs with which𝐻𝑁
could correspond is essentially unbounded. One important caveat
is that there exist sequences of perturbations on 𝐻𝑁 that spawn
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Figure 5: In row-order, the above graphs measure the Overall KL Divergence, Quintile L2 Distance, and Instantaneous KL

Divergence. The top row measures the Overall KL Divergence between DGDV(𝑥) and DGDV(𝐶 (𝑥)); the middle row is Quintile

L2 Distance between the quintile-filtered graphlets of DGDV(𝑥) and DGDV(𝐶 (𝑥)); the bottom row is the Instantaneous KL

Divergence between DGDV(𝑥𝑡−1) and DGDV(𝐶 (𝑥𝑡−1). The x-axis is in units of 50 iterations of Merge-Split. Shaded regions

show per-heuristic variance over 100 trials.

subgraphs that are isomorphic to 𝐻𝑁 (a simple example is merg-
ing and then splitting two nodes in a linked list). We conjecture
that the probability of this happening is extremely low because
of the randomness within Merge-Split. However, we lack theo-
retical justification for this claim, so we instead turn to empirical
measurement to justify that iterative applications of Merge-Split
increasingly spawn subgraphs that differ from the original.
Empirical Privacy Justification - Consider two graphs 𝐺 and
its perturbed counterpart 𝐺 ′ after 𝜏 applications of Merge-Split.
We want the type/frequency of subgraphs within corresponding
locations of 𝐺 and 𝐺 ′ to change over time, thus making it more
difficult to identify 𝐻𝑁 in 𝐺 ′.

To quantify a node’s location, we create a vector ®𝐷𝑥 such that
®𝐷𝑥 [𝑖] is the undirected shortest path distance between 𝑥 and the
𝑖-th node in a list of the graph’s sources and sinks (this list is kept
constant between𝐺 and𝐺 ′ by restricting Merge-Split from being
applied to sources and sinks). A mapping 𝐶 (𝑥) is the 𝑦 ∈ 𝐺 ′ that
minimizes | | ®𝐷𝑥− ®𝐷𝑦 | |. We compare the change in Directed Graphlet
Degree Vector (DGDV) across all node pairs (𝑥,𝐶 (𝑥)) where the
DGDV follows the definition of Sarajlic et al. [41] for all directed
graphlets of size 2, 3, and 4.

Definition 4. Directed Graphlet Degree Vector (DGDV) is

a "129-dimensional vector encoding the two- to four-node graphlet

degrees of the node in the networks; e.g., the 𝑖-th coordinate of the

DGDV of node 𝑛, is the number of times a directed graphlet touches

node 𝑛 at orbit 𝑖" [41]. (In practice, we normalize DGDV to represent

a probability distribution).

As seen in Fig. 5, we utilize three measures, Overall KL Diver-
gence, Quintile L2 Distance, and Instantaneous KL Divergence to
quantify the magnitude of our perturbations to local structure. The
random and potential heuristics increase Overall KL Divergence
between 𝐺 and 𝐺 ′ over time. Notice that the Instantaneous KL
Divergence between𝐺 ′ at time 𝑡 − 1 and 𝑡 is positive and generally
seems to increase over time for random and greedy; however, we
notice oscillatory behavior for greedy and slightly oscillatory be-
havior for random and potential in RT and EDP (that eventually
converges). This evidence indicates that iterative applications of

the random and potential heuristics tend to increasingly "fuzz" the
type and orientation of graphlets at corresponding node locations.
Interestingly, we notice that in both BIDAF and ResNet, the greedy
heuristic increases the Overall KL Divergence until a certain point,
after which it decreases to a converged value. This, combined with
the oscillatory behavior of greedy’s Instantaneous KL divergence,
ties into our visual observations that greedy sometimes results in
degenerate cases where it might simply lengthen or shorten the
single-linked list components of BIDAF and ResNet as mentioned
in Sec. 5.

While the Overall KL Divergence metric measures the changes
in DGDV across ALL orientations/types of graphlets an attacker
might choose only to focus on searching for infrequently occurring
graphlets, as those would be more easily recognizable. Our analysis
of the Quintile L2 distance shows that all heuristics tend to itera-
tively increase the Euclidean distance between the quintile-filtered
graphlets. This implies that iterative applications of Merge-Split
will obfuscate infrequently occurring types and orientations of
graphlets, thus making it more difficult for an attacker who is
searching for an infrequently occurring subgraph.

7 LOCAL PERTURBATION AND GLOBAL

PRESERVATION

Directed-RSS upper bounds the instantaneous change in the steady-
state distribution (Sec 3), but only for eigenvectors of 𝜆𝑖 = 0; for all
other eigenvectors, this bound is irrelevant. Therefore, it must be
shown that the minimization of | | ®𝛿 (𝜏) | | across both the steady-state
and non-steady-state eigenvectors achieves the goal of maintaining
overall structure with respect to random walks. Additionally, a few
degenerate cases from greedy (as mentioned in Sec. 5 and Sec. 6),
made us question whether 𝜏 applications with potential or greedy
truly create a diverse set of subgraphs. Therefore, a new metric,
called Random Walk KL-Divergence (KL𝑟𝑤), is introduced that
measures the change in probability of traveling from vertex 𝑢 to
vertex 𝑣 in 𝑙-steps in 𝐺 ′, where 𝑙 is the length of the shortest path,
at least 1, in 𝐺 . Notice the minimization of KL𝑟𝑤 is a stronger
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Figure 6: Random-KL Divergence (KL-RW or KL𝑟𝑤 ) for "short" (first row), and "long" (second row) probes. Results indicate that

in 3/4 of graphs, all heuristics disrupt short paths several orders of magnitude more than long paths. Shaded regions show

per-heuristic variance over 100 trials.

notion of lineage: not only are the paths maintained, but so is the
probability of traveling from a path’s starting point to its endpoint.

Definition 5. Random-Walk KL Divergence (KL𝑟𝑤 ): Define
KL𝑟𝑤 to be the distance-weighted KL-Divergence [15] between the

probability of reaching 𝑣𝑖 from 𝑢𝑖 in 𝑙-steps on 𝐺 versus 𝑙 ′ steps on
𝐺 ′

. Note that this requires that 𝑢 and 𝑣 remain untouched by Merge-

Split, so all operations involving these nodes are removed from 𝑆M𝜏 and

𝑆S𝜏 . The probability of reaching 𝑣𝑖 from 𝑢𝑖 is represented by 𝑝𝑢𝑖 ,𝑣𝑖 =

(𝑒𝑇𝑢𝑖 (𝐼 − 𝐿𝑅𝑊 )𝐾 ) [𝑣𝑖 ], while on 𝐺 ′
, 𝑝′𝑢𝑖 ,𝑣𝑖 = (𝑒𝑇𝑢𝑖 (𝐼 − 𝐿

′
𝑅𝑊

)𝐾 ) [𝑣𝑖 ],
where 𝑒𝑢𝑖 and 𝑒𝑣𝑖 are basis vectors.

KL𝑟𝑤 =
1
B

∑︁
1≤𝑖≤B

|𝑙𝑖 −𝑙 ′𝑖 | ∗KL( [𝑝𝑢𝑖 ,𝑣𝑖 , 1−𝑝𝑢𝑖 ,𝑣𝑖 ], [𝑝
′
𝑢𝑖 ,𝑣𝑖

, 1−𝑝′𝑢𝑖 ,𝑣𝑖 ])

(13)

To measure local and global structural change, we sampled B =

0.1|V| "short" (𝑙𝑖 < 𝜇𝑙 ) and "long" (𝑙𝑖 > 𝜇𝑙 ) probes from each graph
and re-ran the experiments from Sec. 5. As seen in Fig. 6, for all
heuristics, the magnitude of KL𝑟𝑤 for "short" probes is several
magnitudes greater than "long" probes across all graphs, except in
EDP where potential and random are only half that of "short" probes.
This confirms our assertion that iterative applications of Merge-
Split obscure a graph’s local structure to a higher degree than
its global structure. Additionally, across 3/4 graphs for the "long"
probes, potential results in a smaller change in KL𝑟𝑤 compared to
random. This additionally confirms our assertion that the use of our
potential function is more effective at minimizing overall random
walk structural change relative to random. greedy has unpredictable

Figure 7: The effect of perturbation/coarsening on paths. Blue

edges indicate edges that are on path from 𝐴− > 𝐵 on the

Original Graph.

performance across both "short" and "long" probes, as well as larger
variance, which we expand on in the Limitations.

8 RELATEDWORKS

Publishing graphs that protect certain features has a long research
history.

Synthetic graph generation is the process by which graphs are
built up non-deterministically following a set of rules and prob-
abilities to match a desired property/distribution. Zhu et. al [47]
assigned "mass" to nodes based on their degree in a template graph
and used Field Theory to generate undirected edges between the
nodes, resulting in degree-based differential privacy guarantees.

8



Figure 8: Visualizations of |V| = 50 subgraphs generated by the heuristic set for 𝛽 = 1. Red Nodes correspond to fixed points

exempt from Merge-Split.

Karwa et. al [40] decomposed a template graph into its degree-
unique 𝐾-sized subgraphs, perturbed the degrees with Laplacian
noise, and rejoined the subgraphs to create a privacy-ensured graph.

Hay et. al [12] considered subgraph isomorphism threat models
and proposed randomized edge insertion/deletion to perturb the
local structural properties of social networks while retaining their
global characteristics, like average path length or diameter. Cheng
et. al [4] formalized the protection of subgraphs with heuristic-
driven edge creation/deletion by introducing the k-isomorphism
privacy goal, which asserts that a node and edge-secure graph
should consist of k-copies of particular subgraphs in order to ensure
that the probability of finding the right copy is 1/k. In contrast to
edge manipulation, Mittal et al. [30] considered the preservation of
random walks for social networks by constructing graphs whose
edges are 𝑡-length random walks of a template social network and
showed the relation between 𝑡 , the mixing time of the graph, and
privacy.

Merge-Split builds off these perturbation and threat models
they consider, but it uses merges and splits for the nodes/edges of
directed, lineage graphs, which retain the random walk and spec-
tral properties of the template. Like these works, our formulation
considers a central distributor of the networks; however, Liu et al.
[22] proposed a local perturbation model in which independent
curators inject noise into their local subgraphs before publication
to a central entity. We theorize that Merge-Split could be used as
the perturbation model in this scheme, but its structural/privacy is
a subject of future analysis.
Why isn’t previous research applicable? – Synthetic graph
generation isn’t suitable for lineage preservation because we are

concerned with the release of graphs that not only convey the
structural content of the original graph but also its identity and
function. While synthetic graph generation may spawn graphs that
match the form of a ground truth, inherently the function portrayed
by the graph is completely different. The conservation of function
makes perturbation a more attractive option by virtue of at least
starting with the source of truth; however, edge deletion/creation
or coarsening will spawn drastically different graphs in the context
of lineage. As seen in Fig. 7, consider the original graph where there
exists a single path from 𝐴− > 𝑖− > 𝑗− > 𝑘− > 𝐵. In both Edge
Deletion and Edge Rewiring, there no longer exists a path from
𝐴− > 𝐵 and thus the lineage of B is destroyed. In Edge Addition or
Coarsening, while lineage is maintained from 𝐴− > 𝐵, the paths
themselves and the probability of moving from𝐴− > 𝐵 changes, i.e.
in edge addition there are two paths instead of 1 and the shortest
path is 3 instead of 4 while in coarsening the shortest path length
goes from 4 to 2. Additionally, coarsening decreases the size of the
graph, but in our case, we want to maintain its size. To the best
of our knowledge, Mittal et. al[30] is the only one to address the
preservation of random walks in graph publication; however, their
method reduces the number and length of paths, which is critical
for lineage preservation.

9 DISCUSSION

Merge-Split is a directed graph perturbation algorithm that ad-
dresses non-power-law, lineage graphs – an increasingly important
class that underlies data pipelines and DAG schedulers. There is an
opportunity to apply machine learning to these graphs, but they
must be distributed in a way that protects the privacy of subgraphs
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while maintaining overall structural properties. For directed graphs,
this entails the preservation of random walks between pairs of
points in the original and perturbed graphs, which we term lineage.
Through experimentation and theoretical analysis, we show that
Merge-Split, combined with our potential function, perturbs local
subgraphs while conserving overall structure, such as long-length
random walks and the graph’s steady state.

Limitations: Although we instill "weights" to the edges of 𝐺 ,
Merge-Split is meant for directed, unweighted graphs. Directed
Graphs may contain "heavy" edges, which simplifies the search
for subgraphs as described in Section 6. Therefore, more careful
consideration must be made for threat models where attackers
might use weight information in a subgraph isomorphism search.
Additionally, a relevant concern was that greedy didn’t lead to
minimal change in KL𝑟𝑤 for "long" probes, and we tie this to the
degenerate cases mentioned in Section 3. greedy tended to explode
singly-linked-list subgraphs or the root/leaves of the graph, which
oscillates the distance-weighted component of KL𝑟𝑤 , and thus, its
KL𝑟𝑤 for long probes isn’t always less than random or potential.
This oscillation also explains why the variance of KL𝑟𝑤 is much
larger than other random and potential on a few graphs in Fig. 6. This
opens up future discussion for direct optimization of KL𝑟𝑤 with a
learning-based method that might mirror reinforcement-learning
methods for graph rewiring [25]. Finally, our local obfuscation
privacy argument is built off of empirically measuring changes in
DGDV, but it lacks theoretical underpinnings. Future work consists
of tightly bounding the number of non-automorphic graphs that
can be generated from 𝜏 applications of Merge-Split.
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