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Introduction: Decision Transformers

= Chenetal. (2021) introduced the Decision Transformer (DT): a
return-conditioned transformer architecture for RL
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= DT abstracts the RL as a sequence modeling problem.
= Decision Transformer (DT):
o Inputs: return (g;), state (s;), and action (a;) tokens
o Outputs: the right shifted prediction of the input,
where (d;4) is the action used in inference

Motivation: Connecting Dots from Multi-Task

Learning & RCRL

= Offline RL learns: s; — a;, that maximizes g,
» DTlearns: (gi—i, Si—t> Ap—k» )y Gr» S¢ = Qg

g is critical because it is
encoded into s; and a;
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" From multi-task learning: Representations relating to different
tasks should be distant
= For two sets of tokens (g;, ¢, a;) and (g;, S{, a;):
€(g|s,a) = average distance of return/state-action embeddings
|gt _g“ < €Eg ™ s, A — s’,a£| < €sq
|gt _g“ = €Eg ™ s, A — s’,a£| = €gq
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The distribution of g, represents potentially
very different tasks
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= Cheungetal.(2019): distancing embeddings corresponding to
different tasks can improve multi-task learning
= Qur ldea: To help DT discriminate between different tasks, we
want to use Return-Based Contrastive Learning (RCRL)
o RCRL: maximize distance (6) between state-action
embeddings belonging to different g, buckets

Contrastive Decision Transformers (ConDT):
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Fig. 4: Contrastive Decision Transformer (ConDT) Architecture
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= We introduce Contrastive Decision Transformers (ConDT), which builds on DT:
1. We add a return-dependent transformation layer, T, that projects state and action embeddings

2. We train T, , using our new ConDT loss function (Ls;mrcry ):

- C exp ((me. Zzij)/tau) A
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= We first sample B, pairs of embeddings from different g; buckets
" Here z,y, z, refer to the state-action embeddings of an anchor and its corresponding pair

= Unlike RCRL, L¢;mrcreis a direct optimization of the distance between embeddings
= ConDT is trained with: Lpr + B * LsimrcrL, Where Lpr is the general DT loss and g weighs LgimrcrL

Testing & Experiments: Training Ablations & Evaluation

Environments

" To test the effectiveness of T, and Lg;mrcrL We evaluated 5 baselines:

Summary of Differences:

1. DT — Baseline DT

2. DT+Rot — T, is a random rotation using g;
3. DT+Prod - Tgt is a learnable transformation
4. ConDT w/o Prod - Ty, is used to train

embeddings
5. ConDT - T, is alearnable transformation
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=  \We evaluated ConDT across three domains:

b Ol AU, Atari 2600
. Atari 2600, Breakout Qbert

IIl.  Adroit Robotic Handgrip . .
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Experiments
= We show the performance of DT, DT+Rot, and ConDT:
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" |n summary, across all experiments, ConDT results in better
performance in all domains. ConDT even results in 3X return gain
in the Qbert Atari Experiments. Also, DT+Rot confirms that
distancing representations can achieve sizable return.

= Ablation Study: We investigate how well ConDT distances its
representations relative to DT:
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= |n summary, ConDT embeddings are not only clustered with
respect to their own return bin, but they are also spread w.r.t
other bins (i.e., higher positive and smaller negative similarity).

Conclusions

DT (Chen et al. 2021) experimentation showed promise, while there
still lies a performance gap between DT and SOTA offline RL methods.

= We proposed Contrastive Decision Transformers (ConDT). ConDT adds
a return-based transformation layer, trained with L¢imprcrr-

ConDT beats DT in several experiments across OpenAl Gym, Atari, and
Adroit Robotic Handgrip Manipulation domains.

Lsimrcrr €Xperimentally distances state-action embeddings by return.
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