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● Data goes from vendors to consumers, but context 
is lost

● Vendors use specific terminology that isn’t global

…

class FST:
def __init__(self):

self.description: str = ''  # short sentence describing its characteristics
self.valid_values: str = '' # short sentence describing the finite domain of values
self.format: str = ''              # short sentence that describes the canonical format
self.examples: list = []    # 5-length list with 5 examples 

def cast(self, val):                            # Normalize real data value to the canonical format

def validate(self, val):                    # Validate value according to type definition

● Consumer has to build custom data pipelines to 
satisfy downstream needs
○ Fine for individuals, but it doesn’t scale

● We are moving towards a world 
where there are many vendors 
per consumer
○ Loss of context and 

inconsistent naming makes 
ingestion hard

Functional Semantic Types (FST)
● Semantic Types are “entity tags” that relate a column to its real-world entity

+ Useful for discovery/search
- Lacking context of data’s source, units, and validations

● We introduce Functional Semantic Types (i.e.  FST)
○ Types are represented as Python Classes and have relevant functions
○ Necessary for automating discovery/search/normalization/validation/joining

validate()

cast()
y = cast(   )

assert validate(y) 
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● Given a universe of data, extract and generate the FSTs that span all the columns

● To generate FSTs at scale, we use Large Language Models, specifically GPT4

Testing Universes

1. Kaggle: 707 Tables
2. Harvard: 484 Tables
3. FData: 428 Tables

Discovery/Search

Normalization/Validation

● Our graph represents a hierarchy of functional generalization, meaning:
○ FSTs at the general layer can normalize more representations of the same entity 

than those at the table/product layers

● We use LLMs to generate FSTs and edges from G-FST -> G-FST.

An LLM processes a string-serialized table and:
1. Finds the subset of columns corresponding to an entity
2. Generate T-FSTs for those columns

A T-FST is the most specific subclass 
of the following class hierarchy:
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P-FSTs may represent same entity, 
but handle distinct representations

An LLM generates a G-FST

Many T-FSTs within a product are redundant, 
so we select a representative via a heuristic

GeneralSemanticType (G-FST)

+super_cast(x: Any): 
convert x to self.format
+validate(x: Any): 
is self.super_cast(x) valid?
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Vectorization

K-Nearest 
Neighbors (KNN)

LLM

def cross_type_cast...

Synonymous G-FSTs are 
identified with KNN and 
linked using an LLM

An LLM generates a 
“cross-type-cast”

Evaluation Applications

lifeexpectancy

barcelona-data-setswho-worldhealth-statistics-2020

WHOregionLifeExpectancyAtBirth.csv life_expectancy.csv

class incomelevel(GeneralSemanticType):

    def __init__(self, *args, **kwargs):
        self.description = 'Income level'
        self.format = 'Income as a positive number representing 
        self.examples = [217500.0, 194000.0]

    def super_cast(self, val):
        if isinstance(val, str):
            if val == 'Less Than 5000':
            elif val == '5000-10000':
                return 0.0
                return 7500.0
            elif val == '10000-20000':
                return 15000.0
            elif val == 'More Than 20000':
                return 20000.0
            else:
                raise Exception('Invalid income level')
        elif isinstance(val, (int, float)):
            if val >= 0:
                return float(val)
            else:
                raise Exception('Invalid income level')
        else:
            raise Exception('Invalid income level')

    def validate(self, val):
        casted_val = self.super_cast(val)
        if isinstance(casted_val, float) and casted_val >= 0:
            return True
        else:
            return False

class bodyacceleration(NumericSemanticTypeWithUnits):

    def __init__(self, *args, **kwargs):
        self.description = 'The mean body acceleration
        self.valid_range = [-1.0, 1.0]
        self.dtype = float
        self.format = 'Body acceleration is floating point'
        self.units = 'The unit of body acceleration is 1g'
        self.examples = [-1.0, -0.5, 0.0, 0.5, 1.0]

    def cast(self, val):
        num = float(val)
        if num < -1.0 or num > 1.0:
            raise Exception('Invalid body acceleration')
        return round(num, 6)

class precipitation(NumericSemanticTypeWithUnits):

    def __init__(self, *args, **kwargs):
        self.description = 'Precipitation levels in inches'
        self.valid_range = [0, float('inf')]
        self.dtype = float
        self.format = 'Precipitation is a floating point.'

 self.units = 'Inches'
        self.examples = [0, 0.254, 0.508, 0.762, 1.016]

    def cast(self, val):
        if val == 'T':
            return 0.0
        return round(float(val), 3)

x ∈ p

w = p.cast(x)

7g1

y = g1.super_cast(w)

g1.validate(y) = True

z = cross_type_cast(y)
g2.validate(z) = True 7g2

● Normalization code had complex behavior, including string 
normalization, type-casting, external library usage, and more

● The generated code raised runtime exceptions in less than 2% 
of cases across the universes
○ Implies that the code was well-constructed or there were 

few occurrences of invalid values

● Human evaluation showed that LLMs were performant at 
entity detection, even without a class distribution

fdata

● Additionally, the FSTs were generally well-scoped, but for 
domain-specific data, they were too general

Data Discovery/Search

Data Normalization Data Validation

Data Fusion
class currencyvalue(GeneralSemanticType):

    def __init__(self, *args, **kwargs):
        self.description = 'A currency value'

class currencyinr(GeneralSemanticType):

    def __init__(self, *args, **kwargs):
        self.description = 'Currency value in INR'

def cross_type_cast_between_currencyvalue_and_currencyinr(val):
    reason = 'Here, the real-world entity is the same, i.e., a currency amount. However, it is represented in a 
different unit. We are converting from an unspecified currency to INR. As a default, I am assuming the source 
currency is USD. If this assumption is incorrect, this mapping would not be valid and you would need to adjust the 
source currency accordingly.'
    from forex_python.converter import CurrencyRates
    cr = CurrencyRates()
    conversion_rate = cr.get_rate('USD', 'INR')
    return val * conversion_rateLLMs identified a relationship between two tables referring to 

life-expectancy, but “life-expectancy” wasn’t in either header

Income is represented differently 
across tables: string range or float

- LLM reconciled the differences

- Validation check asserts 
correctness

With transformation logic in 
functions, it can be easily grepped

LLMs can use libraries to 
perform complex mappings, 
like currency conversions.

With wide background 
knowledge, LLMs can 
generate meaningful 
validations

Precipitation: “T” means 
trace amounts of water

Acceleration: Normalized 
values should be [-1,1]

*Disclaimer: The views expressed herein are solely the views of the author(s) and are not necessarily the 
views of Two Sigma Investments, LP or any of its affiliates.  They are not intended to provide, and should 
not be relied upon for, investment advice.   
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