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Abstract

The rise of data science, the inherent dirti-
ness of data, and the proliferation of vast data
providers have increased the value proposition
of Semantic Types. Semantic Types are a way
of encoding contextual information onto a data
schema that informs the user about the defini-
tional meaning of data, its broader context, and
relationships to other types. We increasingly
see a world where providing structure to this in-
formation, attached directly to data, will enable
both people and systems to better understand
the content of a dataset and the ability to effi-
ciently automate data tasks such as validation,
mapping/joins, and eventually machine learn-
ing. While ontological systems exist, they have
not had widespread adoption due to challenges
in mapping to operational datasets and lack of
specificity of entity-types. Additionally, the val-
idation checks associated with data are stored
in code bases separate from the datasets that
are distributed. In this paper, we address both
challenges holistically by proposing a system
that efficiently maps and encodes functional
meaning on Semantic Types.

1 Introduction

Onboarding datasets at scale is human-intensive
because recognizing semantics about how data was
generated, its bounds or other idiosyncrasies is crit-
ical to how it is processed and eventually used. Nor-
malization requires understanding the form/repre-
sentation as it is ingested, as well as the target form
used by other datasets or people in an organization.
Much of the effort involved in semantic understand-
ing can be automated when values are typed with
something richer than the basic primitives (e.g. in-
teger, float, or strings types). In fields like finance,
medicine, or broadly-spanning AI systems, new
data is constantly being added, and automation can
defray some of the ingestion cost.

The underlying pain-point in data onboarding
stems from humans inconsistently naming tables

and columns without knowing who may use them,
their assumptions, the amount of specificity, or
how they may be joined with datasets from other
sources. Therefore, even if a company ingests data
from a high-quality source [21], they often invest
in pipelines to normalize data to ingest, normalize,
and map data to a canonical representation

Furthermore, there are many challenges asso-
ciated with normalizing columnar tables at scale.
In addition to handling null/not-a-number values,
inconsistent data formats, or out-of-distribution val-
ues, it is critical to understand the units of the val-
ues, and this is either implicit (e.g. dollars when
giving the price of housing in the US), written in
prose (e.g. revenue may be in millions of dollars
as noted in the text of a 10k filing), or easily in-
ferred (e.g. a summer temperature of 100 degrees
is Fahrenheit and not Kelvin or Celsius). Addi-
tionally, to compare, join, or group values from
columns in different tables, it may be necessary to
recast values (e.g. convert a 12-hour am/pm time
value to a 24-hour clock value or a country code
to a country name). Identifying these semantics is
behind the reliance on humans during onboarding.

We introduce Functional Semantic Types (FST)
to automatically annotate columnar data with Se-
mantic Types and provide a library of functional
attributes to normalize, validate, and cast real data
values. FSTs are placed in a synthetic-generated
ontology, which directly maps columnar datasets to
their hierarchically organized FSTs. The generation
of FSTs relies upon the usage of Large Language
Models (LLMs) to assign and generate a Python
class definition that contains semantic details and
functional characteristics about the data. By the
breadth of their training, LLMs offer a more gen-
eral solution for entity recognition [6], because they
can leverage the distributional properties/real val-
ues of data, tabular metadata, and data dictionaries
to construct more accurate type annotations. Fur-
thermore, LLMs have shown the ability to generate
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code, and therefore are capable of transforming
semantic context into functional attributes.

Our work takes advantage of the natural hierar-
chical organization of tabular data. We refer to a
collection of tables as a product. The information
within a product is assumed to be initially con-
structed, maintained, and labeled by the same com-
munity of interest. As such, columns and tables, as
well as context, are correlated. Our system is likely
to generate the same FST for multiple columns be-
longing to the tables within a product. The auto-
matic generation of semantic types saves human
labor, and even more so when multiple columns are
assigned the same type. The system verifies this by
merging a subset of values from these columns and
checking that they all pass the same validation test.

At the final stage, we identify common FSTs
across different products. First semantic types with
the same name are agglomerated. Then all the
uniquely named FSTs are turned into a graph by
finding semantically similar FSTs in representation
space and generating cross-type-cast functions to
transfer data values between FSTs. Human verifi-
cation shows that this first attempt identifies com-
munities of semantically-identical entities.

There have been many other efforts to automati-
cally assign semantic types to columnar data, but
with some major differences (see Section 2). They
assume the existence of an ontology or knowledge
graph, they do not generate the functions that de-
fine the Semantic Type, and do not build a bespoke
ontology that is used for cross-type casting. Hence,
the contributions of this work are:

• Automatically generating Functional Seman-
tic Type Python class definitions with fields
and functional methods that characterize,
transform, and validate columnar data values.

• Aggregating commonly named FSTs across
products, and generating conversion code.

• Demonstrating success in real-world collec-
tions of data and evaluating the functionality
and correctness of each of these ontologies.

• Showing that generated ontologies have utility
in downstream data discovery, joining, valida-
tion, and normalization applications.

2 Related Works

The association of columnar tables with entities has
been previously treated as a multi-class prediction

problem over some user-defined distribution of en-
tity types/properties. Methods such as Sherlock[9],
SATO[25], DoDuo[22], and TableGPT[6] use 78
semantic types described by the T2Dv2 Gold
Standard[4] which matches properties from the
DBpedia ontology with column headers from the
WebTables corpus. AutoType[24] made predictions
over 112 manually procured types that spanned dif-
ferent industries. However, the types used in these
works are often too broad for industry-specific
datasets (e.g. in finance, EBITA is a common-
place term, but missing from DBPedia[1] and
WordNet[5] knowledge graphs).

We summarize the related works along several di-
mensions (although TableGPT[6] and Foundational
Models[17] cover nearly all of these). Table Ques-
tion and Answer: Table Cell Identification[23],
Semantic Parsing[18], TabFact[3]. Row-to-Row
Transformation: TDE[7]. Entity Matching Be-
tween Rows: Ditto[13], Deep Entity Matching[16],
Auto-EM[27]. Schema Matching Between Ta-
bles: Valentine[10], SMAT[26]. Data Imputation:
DataWig[2], Eracer[14], IMP[15], HoloClean[20].

A trend that spans most of these works is the
success of LLMs as natural language processing
engines for directly operating on real data values.
LLMs have also shown success in code generation
tasks [12], specifically, for data processing and in-
gestion coding [8, 11]. Our work builds on these
efforts but is unique in that it directly attaches any
functional normalization during the entity recogni-
tion process (encapsulated in a FST), and hierarchi-
cally groups FSTs to build an ontology that identi-
fies semantically identical entities across products.

3 Problem Formulation

Figure 1: The subclasses of DatasetSemanticType . Each
class has specific and inherited instance fields, as well as an
implementation of the cast().

Our FST system is applied to a universe
of data, hierarchically composed of tables and
products. A product consists of at least one
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columnar table. Columns, tables, and prod-
ucts all have labels. The tables within a prod-
uct are assumed to have some informational
similarity. In addition, our set of FSTs can
either be a subclass of DatasetSemanticType
(Fig. 1), or of GenericSemanticType (Fig. 2).
DatasetSemanticType FSTs correspond to the
standard types of data: numeric (with/without
units), boolean, strings, and categorical. Exam-
ining the values in a column, as well as its re-
lation to other columns, is all that is needed to
make this type of assignment. In addition to a
human-readable name, its definition includes de-
scriptive characteristics about the type’s semantics,
domain, and example values, as well as a func-
tional transformation from raw data to normalized,
types. GenericSemanticTypes collate identically-
named ColumnSemanticTypes across products by
applying a standardized normalization procedure
that undergoes self-validation (see Fig. 2). The
FSTs generated at the table and product levels
are called T-FSTs and P-FSTs (each a subclass of
DatasetSemanticType ), while those generated at
the universe level are called G-FSTs (subclass of
GenericSemanticType ).

Figure 2: Class definition of GenericSemanticType and the
cross_type_cast() method.

Goal: Given a table, extract the underlying
semantic entities (if any) per column and gener-
ate a DatasetSemanticType with a descriptive
class name, instance fields, and a cast() that
transforms a single columnar value to the format
dictated by the class. Commonly named FSTs
across products are used to generate a subclass of
a GenericSemanticType that merges the seman-
tics of all the input DatasetSemanticType defini-
tions, consolidates their transform logic into a sin-
gle cross_type_cast(), and evaluates the correct-
ness with validate(). Finally, create a synthetic
ontology from these GenericSemanticTypes that
identifies relations between types which are used
to cast values of a source to a destination FST.

4 FSTO-Gen

Step 1: table→ T-FST - For each table in our uni-
verse, an LLM is provided with a serialized format

of the table (App. A.1) and identifies the subset of
columns that correspond to semantic entities. For
each identified column, the LLM generates the cor-
responding T-FST definitions and a mapping from
column name to generated subclass. Abstract syn-
tax trees are used to parse the output string and
store any class definition and this mapping dictio-
nary. In our experiments, the LLM tends to create
identical subclass names (but not always identical
fields) for columns in the same product.
Step 2: T-FST→ P-FST (product) - There exists
many identical T-FSTs within a product, so we
agglomerate identically-named ones into a single
P-FST (App. A.2). For a given T-FST group, the
unique columnar values spanned by the T-FSTs are
aggregated and iteratively tested via the cast() to
assess the # of values that pass and the # of values
that changed. The T-FST that achieves the max
criteria was selected as the P-FST for the group.
Step 3: P-FST → G-FST (general) - Across
products there exist identically-named, but func-
tionally/semantically different P-FSTs. There-
fore, an LLM is necessary to understand the dif-
ferences in each P-FST and generate a G-FST
whose super_cast() handles the output of each
P-FST’s cast(). By performing two consecutive
transformations at the product and general lev-
els, we must also sanity-check the values. The
validate() is responsible for performing type,
bound, or value-based checks on the output, and is
where we witnessed LLMs use external lookups to
establish a ground truth.
Step 4: G-FST → G-FST (cross) - There exist
many G-FSTs that may represent identical (dif-
ferently named) or distinct entities, that may be
castable. For a given source G-FST, we identify
the k-nearest G-FSTs neighbors, by vectorizing
each G-FST using an embedding model (App.A.3).
An LLM determines the subset of the k neighbors
that are convertible and for each, it generates a
cross_type_cast() that transforms any output of
the source G-FST to a value that would be accepted
by the neighbors validate().

5 Experimental Evaluation

We evaluated the P-FSTs, G-FSTs, and
cross_type_cast()’s on three data universes,
two of which are freely available to the public
(as well as all our code and prompts) with results
shown here and code definitions in the Appendix.
Universe Curation - Our universes source from
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Figure 3: Unshaded rectangles represent columns, shaded rectangles represent T-FSTs, triangles represent P-FSTs, and shaded
circles represent G-FSTs. Each color represents a specific semantic entity (i.e. ZipCode, City, State, etc). Circles at the general
level are the generalization of the P-FSTs. At the cross level is a graph representing the relationship between G-FSTs.

Data-Verse
Data-Verse Properties Ontology Properties

# Cols. # Tables # Data Prod.
#

Cols.

# Data
Set

Types

# Data
Prod.
Types

# Gen
Types

Kaggle 8649 707 237 7051 4730 3196 2043
Harvard 7007 484 12 5898 2998 2325 2057
Factset 3535 428 13 3203 1681 853 664

Table 1: Properties of each universe and their ontologies..

two open-source data providers, Kaggle and Har-
vard Dataverse, as well as a commercial financial
dataset vendor, Factset. For Kaggle, we selected
the 707 most commonly used Kaggle-datasets and
extracted their associated tabular data files (files
and datasets are represented as tables and products
in our nomenclature). For Harvard, we selected the
top 484 most downloaded datasets and organized
them similarly to Kaggle, but Harvard required
additional preparation due to the large number of
fully null columns (App. A.4). Factset consists of
428 tables containing a wide breadth of financial
terminology. Table 1 shows the aggregated details
of each universe. Notice that Kaggle contains the
largest number of tables, products, and columns
while Harvard and Factset contain differing levels
of product granularity and table widths, which are
both factors that affected the performance of the
product and general stages.
LLM Choice - We used OpenAI’s gpt-4-0613
LLM with 8k context for the table, general, and
cross stages of FSTO-Gen.
Evaluation Criteria - To evaluate the functionality
of FSTO-Gen, we considered the throughput perfor-
mance of each pipeline stage. Our analysis of the
functional characteristics of each stage provides

intuition about the behavior of each transformation;
however, to demonstrate correctness, a human eval-
uation of the P-FSTs and cross_type_cast()’s
was needed to assess the LLM’s ability to select
subsets of information (relevant columns that refer
to semantic entities in table or relevant seman-
tically similar general FSTs that are castable), as
well generate accurate code.

For each P-FST, we iterated over each child FST,
sampled 1000 values from the columns covered
by the FST, and aggregated a unique set. For
each x in this set, we applied P-FST’s cast()
to x to obtain a value w. For the G-FST parent
of P-FST, we applied G-FST’s super_cast() to
w to obtain a value y, which we validated us-
ing G-FST’s validate(). Then for a neighboring
G-FST, we applied a cross_type_cast() on y to
obtain a value z, which we validated in the neigh-
bor’s validate(). For each cast function (cast(),
super_cast(), cross_type_cast()), we record
if it passes (indicated by ✓) or errors out (χ). The
result of a cast can either be Complex (differs from
the original), Identity (identical to the original), or
an Exception (erroneous input or cast logic).

5.1 Functional Throughput Results

Column → P-FST: The results are summarized in
Table 2. Non-Null values mostly pass through un-
changed, i.e. the data is already well-formatted and
fits the canonical form of the P-FST. Some values
change after casting, indicating normalization was
necessary. Complex transformations range from
rounding floats (App. A.6.1, A.6.2) to mapping
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Col Cast Return Universe
Value (x) Func Val Kaggle Harvard Factset

Non-Null
✓

Complex 17.14 19.97 15.21
Identity 68.26 54.25 48.81

χ Exception 0.86 1.30 0.71

Null
✓ Complex 12.12 14.72 34.22
χ Identity 1.62 9.76 1.05

Table 2: The distribution of cast() outcomes for product
FSTs across all universes. Trends indicate that data is already
in the correct form, or it performs a Complex transformation.

country abbreviations to full names with lookup
tables (App. A.6.3). A few times, a RunTimeError
in the cast() is thrown.
P-FST→ G-FST: The results are summarized in Ta-
ble 2. In general, values are left unchanged, indicat-
ing that data already achieved normalization in the
P-FST, which is expected considering that there are
many 1-1 correspondences between P-FSTs and
G-FSTs (per Table 1). When the super_cast()
is a Complex transformation, this indicates that
different communities of interest (in this case prod-
ucts) have differing, yet locally standardized ways
of representing the same data (App. A.6.4). In
some of these cases, the validate() fails, indi-
cating insufficient normalization in the P-FST or
G-FST, incorrect validate(), or deeper insights
are needed into the domain restriction of the G-FST
(App. A.6.5). However, more frequently, Complex
transforms pass validate() (App. A.6.6 A.6.7),
indicating that LLMs can derive a common stan-
dard for a large variety of entity types at scale.

Col Cast Return Validate Dataset
Entry Func Val Func Kaggle Harvard Factset

Non-Null
✓

Complex
Pass 11.59 7.02 9.83
Fail 2.14 2.08 0.37

Identity
Pass 79.86 84.96 83.68
Fail 2.61 4.12 2.59

χ Exception Fail 2.87 1.38 1.29

Null
✓

Complex
Pass 0.04 0.28 2.00
Fail 0.88 0.15 0.24

Identity
Pass 0.00 0.00 0.00
Fail 0.00 0.00 0.00

χ Exception Fail 0.00 0.00 0.00

Table 3: The distribution of outcomes after the application of a
G-FST’s super_cast() and validate(). The most common
outcome is when Non-Null data undergoes an Identity transfor-
mation, the result of which generally passes the validate().
When data undergoes a Complex transformation, this indi-
cates that differing product-level normalization was used for
the same semantic entity.

G-FST → G-FST: We found (Table 4) many
semantically-identical entities that differed only
by class name (App: A.6.8). The generation of
T-FSTs is a generative process with no source of
truth, and since LLMs are stochastic, it is likely to
name identical semantic entities with slightly differ-
ing naming conventions. An artifact of generating

Col
Cast Return Validate Dataset

Entry Func Val Func Kaggle Harvard Factset

Non-Null
✓

Complex
Pass 14.26 18.34 11.10
Fail 0.95 2.30 0.97

Identity
Pass 77.30 63.55 78.75
Fail 7.16 14.69 5.78

χ Exception Fail 0.29 0.45 0.20

Null
✓

Complex
Pass 0.00 0.22 1.52
Fail 0.00 0.40 1.67

Identity
Pass 0.00 0.00 0.00
Fail 0.00 0.05 0.00

χ Exception Fail 0.04 0.00 0.00

Table 4: The distribution of outcomes after the application of
cross_type_cast() between general FSTs and the target’s
validate(). Values tend to undergo Identity transformation,
indicating the existence of semantically-duplicative FSTs.

ontologies from the bottom-up is that entities at the
most general level may be too specific or too broad;
however, this is the fundamental purpose of the
cross_type_cast(). While these FSTs differ by
name, they shouldn’t differ in their semantics (and
therefore are close in the vectorized representation
space of their corresponding classes). The next
most common outcomes were Complex transforms,
where we witnessed nontrivial behavior involving
lookups, mappings, etc.(App. A.6.9, A.6.10), as
well as Identity mappings that failed the neighbor’s
validate() (App. A.6.11). We attribute these
cases to hallucinations, whereby the LLM will jus-
tify a cross_type_cast() with faulty logic.

5.2 Human Evaluation Results

Figure 4: Confusion Matrices of the LLM’s ability to recog-
nize and generate P-FSTs. We witness high True Positive, low
False Positive, and low False Negative rates, indicating both
high precision and recall.

As there is no ground truth, we performed a
human evaluation to assess quality and correctness.
The quality of P-FSTs was based on a sample of
50 tables from Kaggle, and 20 tables each from
Factset and Harvard for a total of 1̃000 columns.
Our results show (Figure 4) that LLMs have high
precision and recall in recognizing semantic entities
and were able to generate correctly-scoped, and
functionally correct FSTs.

We counted when P-FSTs were either too broad
or too specific (Table 5). For those with correct
scope, we labeled cases of when the generated
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Incorrect Scope Correct Scope
Too Too Totally Slightly Just

dataverse Broad Specific Incorrect Wrong Right
kaggle 15.44 1.52 2.78 5.06 75.19
harvard 17.54 0.88 1.32 0.44 79.82
factset 49.07 0 3.27 1.87 45.79

Table 5: Quality Distribution of True Positive, product-level
FSTs. The LLM generates types that are too broad, or perfect.

class completely differed from the semantics of
the entity (Totally Incorrect), contained slightly
erroneous fields or functional attributes (Slightly
Wrong), or was (Just Right). In Kaggle and Har-
vard, these types were generally right, while in
Factset they were either too broad or perfect. We
hypothesize LLMs tend to generalize unfamiliar
concepts (e.g. it labeled a finance-specific growth
rate with "Growth Rate"), making any cast or vali-
dation ineffectual. Finally, even when P-FSTs were
scoped properly, some contained errors such as mis-
matches between its name or description or made a
false assertion (App. A.6.11).

.

Figure 5: Confusion Matrices of LLM’s ability to recognize
true, castable relationships between G-FSTs. We witness lower
levels of recall and precision, due to the LLMs hallucination.

To assess the quality of the
cross_type_cast(), we sampled 20 G-FSTs
from each universe, as well as its k=20 neighbors
in representation space. For each neighbor,
we recorded whether there should exist a
cross_type_cast() between the source and
destination. This served as a ground-truth
comparison to the edges present in the generated
ontology, with which we classified if the LLM
was able to recognize when two G-FSTs were
truly cross-type-castable. As seen in Fig 5, we
witnessed acceptable recall on Kaggle and Harvard,
low recall on Factset, and low precision across
all universes. The reasons for low recall on
Factset are related to the analysis in Table 5: when
an LLM can’t recognize semantic entities, it’s
difficult to assess whether a cross-type-cast is
allowed. Additionally, because LLMs tend to
hallucinate, the false positive rate was large across

all universes, especially for Factset, which is an
artifact of the generality of the FSTs. LLMs found
cross-type-casts between types like "Percent" and
"Ratio", which might refer to entirely different
entities, but when generalized, hallucinations
become more likely.

6 Conclusion and Applications

FSTO-Gen is an LLM-powered framework for au-
tomating the generation of G-FSTs and their re-
lations from columnar data. Despite inaccura-
cies sourcing from domain-specific language or
hallucination, FSTO-Gen shows promise in chal-
lenging data onboarding tasks: normalization,
validation, fusion, and discovery. Normaliza-
tion and Validation are automatically unlocked
in the declaration of G-FSTs because columns
must undergo two stages of normalization (cast(),
super_cast()) before G-FST validation, and this
process was shown to reveal invalid values. One
such example was the identification of negative
values for a timeduration type. Fusion is achiev-
able by joining columns within or across G-FSTs.
For the former case, FSTO-Gen created a G-FST
for temperature that handled P-FSTs that de-
clared temperature in Celsius, Fahrenheit, or even
Kelvin. For the latter case, FSTO-Gen created
super_cast()’s that converted gender data, from
string representations like "Male|Female|Other"
to boolean "True=male|False=female" or numeric
"0=other|1=male|2=female". Finally, Discovery is
achieved by allowing practitioners to semantically
search over the informational/functional properties
of FSTs that would otherwise be challenging with
raw data. For example, FSTO-Gen generated a FST
for lifeexpectancy that included four products,
two of which came from the "world happiness"
product where a column was named "Tooltip", one
from the "US Health report" product, and one from
a "Brussels Open Data" product where a column
was named "longevity". It is doubtful that someone
searching for data related to life expectancy would
have known that these products would be related,
but automated contextualization with LLMs com-
bined with the hierarchical composition of FSTO-
Gen found these relations. We have begun search-
ing for ways to improve this framework, such as
using retrieval-augmented-generation or batched
inference to reduce hallucination, but even in its
current state, FSTO-Gen shows promise in reducing
the tedious job of data onboarding.
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Zhang, Çağatay Demiralp, Chen Chen, and Wang-
Chiew Tan. 2022. Annotating columns with pre-
trained language models. In Proceedings of the
2022 International Conference on Management of
Data, SIGMOD ’22, page 1493–1503, New York,
NY, USA. Association for Computing Machinery.

7

https://doi.org/https://doi.org/10.1016/j.future.2020.05.019
https://doi.org/https://doi.org/10.1016/j.future.2020.05.019
https://doi.org/10.1145/3514221.3517906
https://doi.org/10.1145/3514221.3517906


[23] Huan Sun, Hao Ma, Xiaodong He, Wen-tau Yih,
Yu Su, and Xifeng Yan. 2016. Table cell search
for question answering. In Proceedings of the 25th
International Conference on World Wide Web, pages
771–782.

[24] Cong Yan and Yeye He. 2018. Synthesizing type-
detection logic for rich semantic data types using
open-source code. In Proceedings of the 2018 Inter-
national Conference on Management of Data, SIG-
MOD ’18, page 35–50, New York, NY, USA. Asso-
ciation for Computing Machinery.

[25] Dan Zhang, Madelon Hulsebos, Yoshihiko Suhara,
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A Appendix

A.1 Table Serialization in Step 1 of FSTO-Gen
(table)

In step 1 of FSTO-Gen, an LLM is tasked with con-
verting a table into a mapping dictionary which
maps some subset of the tables’ columns to FSTs
names and the definition of FSTs themselves. The
motivation for this scheme sources from the se-
rialization process in Sherlock [9] and DoDuo [22],
which showed that semantic type annotation is
enhanced when the annotation engine can under-
stand table-level and column-level semantics. In
fact, in our experiments, there were many cases
where columns were badly named, but table/prod-
uct names helped the LLM perform inference. The
problem with table serialization is fitting it into the
context window of the LLM, so given a table as a
pandas dataframe, we convert it to a string using
serialize() as defined in Listing 1.

1 import pandas as pd
2
3 def serialize(df: pd.DataFrame , data_dict:

dict[str , str]) -> str:
4 string = ''
5 for col in df.columns:
6 is_numeric = ... # check if col is

numeric/categorical
7 quartile_1 , median , quartile_3 =

df['col']. quantile ([0.25 ,0.5 ,0.75])
8 if is_numeric:
9 string += f"""

10 -col: {col}
11 *description: {data_dict[col]}
12 *mean: {df[col].mean()}
13 *std: {df[col].std()}
14 *min: {df[col].min()}
15 *0.25: {quartile_1}
16 *0.5: {median}
17 *0.75: {quartile_3}
18 *max: {df[col].max()}
19 *first_five: {df[col].iloc [:5]. values}
20 *num_na: {df[col].isna().sum()}
21 """
22 else:
23 string += """
24 -col: {col}
25 *description: {data_dict[col]}
26 *num_na: {len(df[col]. unique ())}
27 *top_5_most_frequent:

{df[col]. value_counts ().nlargest (5)}
28 *num_na: {df[col].isna().sum()}
29 """
30 return string

Listing 1: serialize() function which converts a pandas
dataframe table to a string.

A.2 Merging T-FSTs into a P-FST in Step 2 of
FSTO-Gen (product)

After Step 1 of FSTO-Gen, for each product, there
exist many T-FSTs with the same name, which
tend to also have the same semantics, so we per-
form an agglomeration of them into a single P-FST

1 import numpy as np
2
3 def agglomerate(tfsts: list[DataSetSemanticType],

unique_set: list[Any]):
4 mat = np.zeros((len(tfsts), 2))
5 for ix in range(len(tfsts)):
6 num_passes = 0
7 num_changes = 0
8 for x in unique_set:
9 try:

10 y = tfsts[ix].cast(x)
11 num_passes += 1
12 num_changes += y != x
13 except Exception as e:
14 pass
15 mat[ix] = [num_passes , num_changes]
16 max_ix = mat[mat[:, 0] == mat[:,

0]. max()]. argmax ()
17 return tfsts[max_ix]

to reduce the number of LLM calls at the general
stage. Given a grouping G of T-FSTs, we ideally
would perform an agglomeration similar to the
general stage, because while the T-FSTs have the
same name, they may still have different fields or
cross_type_cast()’s. However, this is computa-
tionally expensive across the many groupings in the
product stage, so instead we pick the most func-
tionally general T-FST that performs meaningful
normalization on the columnar input. We seek to
maximize throughput through the cast(), so we
pick the T-FST that throws the least errors and per-
forms the most Complex transformation on a set of
columnar values. To assemble this set, we sample
1000 values from each column associated with a
T-FST and create a unique set. We show this in
the agglomerate() which takes in a grouping of
T-FSTs and a unique set of values, and generates a
P-FST.

A.3 Finding k G-FSTs pairs in Step 4 of
FSTO-Gen (cross)

There exist many G-FSTs that are semantically sim-
ilar, or even identical, so to identify joins across
products, we generate cross_type_cast()’s be-
tween similar G-FSTs. First, we serialize each
G-FST into a string by concatenating the class name
with its description instance field. Then for each
string we vectorize the class using an embeddings
model (we use the all-MiniLM-L6-v2 model [19])
to convert the model into a 384-length vector and
find the nearest k neighbors using kNN (we use
k = 20 to reduce the number of tokens in the
cross LLM prompt). For each G-FST, we concate-
nate the cross prompt with the G-FST and each of
its 20 neighbors to receive a maximum of 20 output
cross_type_cast()’s.
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A.4 Data Curation Details
The Kaggle dataverse was sourced from the top
1000 most downloaded Kaggle Datasets, and we
extracted the ".csv" files present into each dataset.
Each Kaggle dataset was termed as a product, while
the ".csv" files as a table. Across all universes, we
selected tables that had at least 80% of columns
with at least more than one-null value. From the
set of 1000, we selected the top 707. In the end,
there were 237 products with an average of 3 ta-
bles per product. We performed a similar pro-
cess for the Harvard dataverse, except we selected
the top 500 by filtering on whether the datasets
contained ".tab" files (tabular data files) and if
they were released publicly. Additionally, Har-
vard datasets are generally mapped directly to a
single tabular file, so to enhance the product stage
we categorized datasets by their subject tag, which
could be any one of: "agriculturalsciences, busines-
sandmangement, earthandenvironmentalsciences,
law, socialsciences, artsandhumanities, chemistry,
engineering, mathematicalsciences, astronomyan-
dastrophysics, computerandinformationscience,
medicinehealthandlifesciences". With a small num-
ber of products, there is less opportunity for aggre-
gation to occur at the product stage as columns are
less likely to have semantically similar information
in wider groupings. This explains the greater de-
crease in the number of types from FSTs to P-FSTs
in Kaggle versus Harvard (Table 1). The Factset
universe is a commercial, proprietary universe and
its details can’t be revealed under confidentiality
agreements.

A.5 FST allowed Imports
To perform data manipulation tasks and lookups,
in the declaration of each FST, we allowed the fol-
lowing set of imports:

1. numpy - to perform array manipulation.

2. pandas - to handle na/null values.

3. datetime - to perform date string operations.

4. math - to perform rounding.

5. pycountry/countryinfo - to perform geo-
graphic lookups.

A.6 Examples
A.6.1 BodyAcceleration

This P-FST (Listing 2) was generated from the
"human-activity-recognition-with-smartphones"

1 class
bodyacceleration(NumericSemanticTypeWithUnits):

2
3 def __init__(self , *args , ** kwargs):
4 self.description = 'The mean body

acceleration in a certain direction '
5 self.valid_range = [-1.0, 1.0]
6 self.dtype = float
7 self.format = 'Body acceleration should be

a floating point number between -1 and
1'

8 self.units = 'The unit of body acceleration
is 1g, where g is the acceleration due
to gravity '

9 self.examples = [-1.0, -0.5, 0.0, 0.5, 1.0]
10
11 def cast(self , val):
12 num = float(val)
13 if num < -1.0 or num > 1.0:
14 raise Exception('Invalid body

acceleration ')
15 return round(num , 6)

Listing 2: Body Acceleration P-FST

product from Kaggle. This FST represents
accelerometer values, and the generated cast()
function will float-cast and round the number.
However, these values are stored as strings and
contain various rounding conventions. The cast()
standardizes the number of decimal points to 6,
and converts all strings to floats. Additionally,
using its understanding of accelerometer data, the
LLM it assigned a unit of "1g" for acceleration.
It also used the min/max values from App. A.1
to create bounds. These may not be right, but
these are rules enforced by the data and the LLM’s
knowledge about accelerometer values.

A.6.2 Precipitation

1 class precipitation(NumericSemanticTypeWithUnits):
2 def __init__(self , *args , ** kwargs):
3 self.description = 'Precipitation levels in

inches '
4 self.valid_range = [0, float('inf')]
5 self.dtype = float
6 self.format = 'Precipitation should be a

floating point number indicating
inches of precipitation.'

7 self.units = 'Inches '
8 self.examples = [0, 0.254, 0.508, 0.762,

1.016]
9

10 def cast(self , val):
11 if val == 'T':
12 return 0.0
13 return round(float(val), 3)

Listing 3: Precipitation P-FST

In the construction of a precipitation FST (List-
ing 3) in the "weatherww2" product from Kag-
gle, the product contains weather information dur-
ing World War 2, and each table contains data
relative to specific geographic locations. A col-
umn, named "precip.", consists of a mixture of
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floating-point values and a single letter ’T’. With-
out context, it could be confusing to any user
of the data, or even cause failures in any down-
stream pipelines that rely upon the column being
floating-point. The table and product stages of
FSTO-Gen identified a few important features: 1)
the table corresponded to U.S. weather conditions
2) "precip." refers to "precipitation" 3) precipita-
tion in the U.S. is measured in inches, so it sub-
classed a NumericSemanticTypeWithUnits and
added "inches" as a unit 4) identified the existence
of a value ’T’, which canonically refers to when
trace amounts of rain occur and replaced ’T’ with
0. Encapsulated in an FST, this type allows any
user to understand how it was processed.

A.6.3 NationalityName

1 class nationalityname(CategoricalEnumSemanticType):
2
3 def __init__(self , *args , ** kwargs):
4 self.description = 'Name of a nationality '
5 self.valid_values = 'Name should be a

string and a valid country name'
6 self.format = 'Names should be capitalized '
7 self.examples = ['United States ', 'France ',

'Germany ', 'Canada ', 'Brazil ']
8
9 def cast(self , val):

10 country = pycountry.countries.get(name=val)
11 if country is None:
12 raise Exception('Invalid country name')
13 return country.name

Listing 4: NationalityName P-FST

Each table in the "fifa-22-complete-player-
dataset" product contains information about in-
dividual players in the soccer videogame, FIFA
2022. One type that arose in this product was a
P-FST (Listing 4) that represents the nationality of
a soccer player, and the generated cast() function
checks that the country is valid by using a lookup
from the pycountry library. It produced an Excep-
tion for the value “China PR”, which is the name
of the soccer team, not a nationality name.

A.6.4 Latitude
These two T-FSTs (Listing 5) were generated in

Harvard’s "earthandenvironmentalsciences" prod-
uct, and merged during the product stage of FSTO-
Gen. This example shows how table-level genera-
tion can produce a class with the same name, but
slightly different semantics. The first class signifies
that the latitude corresponds to a loss event, while
the second class refers to the most general notion
of latitude and contains a bound check within its
cast().

1 class latitude(NumericSemanticType):
2
3 def __init__(self , *args , ** kwargs):
4 self.description = 'Latitude where the loss

event occurred '
5 self.valid_range = [32.548 , 41.867]
6 self.dtype = float
7 self.format = 'Latitude should be a

floating point number '
8 self.examples: list = [39.739 , 39.747 ,

39.763 , 39.78, 39.133]
9

10 def cast(self , val):
11 return float(val)
12
13 class latitude(NumericSemanticType):
14
15 def __init__(self , *args , ** kwargs):
16 self.description = 'Geographical latitude '
17 self.valid_range = [-90.0, 90.0]
18 self.dtype = float
19 self.format = 'Latitude should be a

floating point number between -90.0
and 90.0'

20 self.examples = [32.516372 , 32.478485 ,
32.442435 , 32.408118 , 32.373841]

21
22 def cast(self , val):
23 num = float(val)
24 if num < -90.0 or num > 90.0:
25 raise Exception('Invalid latitude ')
26 return num

Listing 5: Latitude P-FSTs

A.6.5 Duration

1 class duration(GeneralSemanticType):
2
3 def __init__(self , *args , ** kwargs):
4 self.description = 'Duration in seconds '
5 self.format = 'Should be a positive

floating point number representing
seconds '

6 self.examples = [22.534 , 22.745 , 22.105 ,
23.477 , 22.684]

7
8 def super_cast(self , val):
9 if isinstance(val , str):

10 val = float(val)
11 return round(val , 3)
12
13 def validate(self , val):
14 casted_val = self.super_cast(val)
15 if not isinstance(casted_val , float) or

casted_val < 0:
16 return False
17 return True

Listing 6: Duration G-FST

The duration G-FST in Listing 6 represents the
temporal duration between events and correctly
throws an error when the value is less than 0, in-
dicating that an event was in the past. Generally,
the duration between events is seen as a scalar, re-
gardless of whether the event was passed in or not,
so this function failed validate() on the column
value of "-27.83". Whether or not this is the correct
behavior, alerts any user of this G-FST about how
negative numbers are being handled and allows
them to alter the behavior.
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A.6.6 Gender

1 class gender(GeneralSemanticType):
2
3 def __init__(self , *args , ** kwargs):
4 self.description = 'A gender '
5 self.format = 'In lower -case and as a

string '
6 self.examples = ['male', 'female ', 'male',

'female ', 'male']
7
8 def super_cast(self , val):
9 str_val = str(val).lower()

10 if str_val in ['male', 'female ', 'm', 'f',
'1', '2']:

11 if str_val == 'male' or str_val == 'm'
or str_val == '1':

12 return 'male'
13 elif str_val == 'female ' or str_val ==

'f' or str_val == '2':
14 return 'female '
15 else:
16 return 'other '
17
18 def validate(self , val):
19 casted_val = self.super_cast(val)
20 if casted_val in ['male', 'female ',

'other ']:
21 return True
22 else:
23 return False

Listing 7: Gender G-FST

A.6.7 Timestamp
The timestamp G-FST in Listing 8 represents a
timestamp in a specific format. The P-FSTs that
it agglomerates each use a unique format, so as
seen in the super_cast(), it performs an exhaus-
tive normalization process of each type to that of
self.format.

A.6.8 Redundant G-FST Names
In Listing 9, we show the generated G-FSTs re-

lated to Covid-19 Case Counts. Each class contains
differing levels of granularity in its name, but the
descriptions are all relatively similar. In cases like
these, the super_cast()’s between any pair is a
Identity mapping.

A.6.9 Nontrivial Education super_cast()

In Listing 10, we show a Complex transfor-
mation between two G-FSTs, where the source
represents education as a set of enum strings,
while the latter represent it as numbers. Using
the set of unique values in the former and the
range bounds in the latter, the LLM generates a
cross_type_cast() that works on real-data val-
ues. The reasoning string was generated by the
LLM to justify its behavior.

A.6.10 Nontrivial Currency super_cast()

In Listing 11, we show a Complex transforma-
tion from a United States Dollar G-FST to an Indian

1 class timestamp(GeneralSemanticType):
2
3 def __init__(self , *args , ** kwargs):
4 self.description = 'A timestamp '
5 self.format = "A string in the format

'YYYY -MM-DD HH:MM:SS'"
6 self.examples = ['2020 -01 -01 00:00:00 ',

'2019 -12 -31 23:59:59 ', '2020 -02 -29
12:34:56 ', '2019 -02 -28 01:23:45 ',
'2020 -12 -31 11:11:11 ']

7
8 def super_cast(self , val):
9 if isinstance(val , int) or isinstance(val ,

float):
10 return datetime.utcfromtimestamp(
11 val
12 ).strftime('%Y-%m-%d %H:%M:%S')
13 elif isinstance(val , str):
14 try:
15 return datetime.strptime(
16 val , '%Y-%m-%d %H:%M:%S'
17 ).strftime('%Y-%m-%d %H:%M:%S')
18 except ValueError:
19 try:
20 return datetime.strptime(
21 val , '%m/%d/%Y %H:%M:%S'
22 ).strftime('%Y-%m-%d %H:%M:%S')
23 except ValueError:
24 try:
25 return datetime.strptime(
26 val , '%d/%m/%Y %H:%M:%S'
27 ).strftime('%Y-%m-%d

%H:%M:%S')
28 except ValueError:
29 try:
30 return

datetime.strptime(
31 val ,
32 '%Y-%m-%d

%H:%M:%S%z'
33 ).isoformat ()
34 except ValueError:
35 try:
36 return datetime \
37 .strptime(
38 val ,
39 '%H:%M:%S'
40 ).strftime(
41 '%Y-%m-%d %H:%M:%S'
42 )
43 except ValueError:
44 raise Exception(
45 'Invalid timestamp '
46 )
47 else:
48 raise Exception('Invalid timestamp ')
49
50 def validate(self , val):
51 casted_val = self.super_cast(val)
52 try:
53 datetime.strptime(casted_val , '%Y-%m-%d

%H:%M:%S')
54 return True
55 except ValueError:
56 return False

Listing 8: Timestamp G-FST

Rupee G-FST. While in App. A.5, we stated only a
fixed set of libraries could be used – the LLM ig-
nored this rule and used a completely valid currency
conversion library, forex_python, to perform con-
versions using the most up-to-date exchange rate.

A.6.11 Incorrect Weight super_cast()
In Listing 12, we show an incorrect Identity

transformation from a crop yield weight G-FST in
kg/ha (ha=hectare, a unit of area) to a fish yield
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1 class confirmedcases(GeneralSemanticType):
2
3 def __init__(self , *args , ** kwargs):
4 self.description = 'Number of confirmed

COVID -19 cases '
5 self.format = 'The number should be a

non -negative integer '
6
7 class covidcases(GeneralSemanticType):
8
9 def __init__(self , *args , ** kwargs):

10 self.description = 'COVID -19 Cases '
11 self.format = 'COVID -19 cases should be a

positive integer , representing the
number of cases '

12
13 class casescount(GeneralSemanticType):
14
15 def __init__(self , *args , ** kwargs):
16 self.description = 'Count of COVID -19 cases'
17 self.format = 'Count of cases should be an

integer with no decimal places '
18
19 class numcases(GeneralSemanticType):
20
21 def __init__(self , *args , ** kwargs):
22 self.description = 'Number of COVID -19

cases '
23 self.format = 'Number of cases should be a

positive integer '

Listing 9: Covid-19 Case G-FSTs (only the name and its
description and format fields are shown for brevity)

1 class education(GeneralSemanticType):
2
3 def __init__(self , *args , ** kwargs):
4 self.description = 'Level of education '
5 self.format = 'In capitalized string form'
6 self.examples = ['Secondary / Secondary

Special ', 'Higher Education ',
'Incomplete Higher ', 'Lower
Secondary ', 'Academic Degree ']

7
8 class mothereducation(GeneralSemanticType):
9

10 def __init__(self , *args , ** kwargs):
11 self.description = "Education level of the

student 's mother"
12 self.format = 'Education level should be an

integer '
13 self.examples = [0, 1, 2, 3, 4]
14
15 def cross_type_cast_between_education_\
16 and_mothereducation(val):
17 reason = 'Both the Education and

mothereducation classes represent the same
real -world entity , which is the education
level. However , they represent this
information in different formats. The
education class represents education
levels as strings , while mothereducation
represents them as integers. We can map
the string representation to the integer
representation by identifying keywords in
the string that correspond to different
integer values.'

18 mapping = {'no education ': 0, 'education level
1': 1, 'education level 2': 2, 'education
level 3': 3, 'education level 4': 4,
'education level 5': 5, 'education level
6': 6, 'higher education ': 7}

19 return mapping.get(val.lower(), 0)

Listing 10: Conversion Between Two Categorical Enum
G-FSTs representing education (only the name and its
description and format fields are shown for brevity).

G-FST in (kg). The LLM incorrectly asserts that
the two types are castable and hallucinate in its rea-

1 class currencyvalue(GeneralSemanticType):
2
3 def __init__(self , *args , ** kwargs):
4 self.description = 'A USD currency value'
5 self.format = 'Currency Value should be a

floating point number '
6 self.examples = [113524789243.0 ,

63497164978.0 , 49124317794.0 ,
9572240391.0 , 1918358283.0]

7
8 class currencyinr(GeneralSemanticType):
9

10 def __init__(self , *args , ** kwargs):
11 self.description = 'Currency value in INR'
12 self.format = 'Currency should be

represented as a floating point number '
13 self.examples = [450000 , 370000 , 158000 ,

225000 , 130000]
14
15 def cross_type_cast_between_currencyvalue_\
16 and_currencyinr(val):
17 reason = 'Here , the real -world entity is the

same , i.e., a currency amount. However , it
is represented in a different unit. We are
converting from an unspecified currency to
INR. As a default , I am assuming the
source currency is USD. If this assumption
is incorrect , this mapping would not be
valid and you would need to adjust the
source currency accordingly.'

18 from forex_python.converter import CurrencyRates
19 cr = CurrencyRates ()
20 conversion_rate = cr.get_rate('USD', 'INR')
21 return val * conversion_rate

Listing 11: Conversion Between USD and Indian Rupee
G-FSTs (only the name and its description and format fields
are shown for brevity).

1 class yieldweight(GeneralSemanticType):
2 def __init__(self , *args , ** kwargs):
3 self.description = 'The yield weight in

kg/ha of an entity '
4 self.format = 'Yield weight should be

formatted as a floating point number
(in kg/ha units)'

5
6 class fishweight(GeneralSemanticType):
7 def __init__(self , *args , ** kwargs):
8 self.description = 'The weight of the fish

in kg'
9 self.format = 'Weight should be a

non -negative number , representing the
weight in kg'

10
11 def cross_type_cast_between_yieldweight_\
12 and_fishweight(val):
13 reason = 'Both yieldweight and fishweight

represent the real -world entity , weight.
No conversion is required as both are
represented as float.'

14 return val

Listing 12: Incorrect Conversion Between yieldweight and
fishweight G-FSTs because of differing units (only the name
and its description and format fields are shown for brevity).

soning. We hypothesize that batching outputs from
the LLM and performing a consensus, or using
more examples in the prompt, could help alleviate
these issues.
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